The Immune Phenotype of Three Drosophila Leukemia Models
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28476910
PubMed Central
PMC5499123
DOI
10.1534/g3.117.039487
PII: g3.117.039487
Knihovny.cz E-zdroje
- Klíčová slova
- Genetics of Immunity, Ras, hemocyte, insect immunity, nematodes, oncogene,
- MeSH
- Drosophila MeSH
- fenotyp * MeSH
- hemocyty imunologie MeSH
- kachexie * genetika imunologie MeSH
- larva genetika imunologie MeSH
- leukemie * genetika imunologie MeSH
- modely nemocí na zvířatech MeSH
- přirozená imunita * MeSH
- proteiny Drosophily genetika imunologie MeSH
- protoonkogenní proteiny p21(ras) genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny Drosophily MeSH
- protoonkogenní proteiny p21(ras) MeSH
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
Zobrazit více v PubMed
Anderl I., Vesala L., Ihalainen T. O., Vanha-Aho L. M., Ando I., et al. , 2016. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12: e1005746. PubMed PMC
Arefin B., Kucerova L., Dobes P., Markus R., Strnad H., et al. , 2014. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J. Innate Immun. 6: 192–204. PubMed PMC
Arefin B., Kucerova L., Krautz R., Kranenburg H., Parvin F., et al. , 2015. Apoptosis in hemocytes induces a shift in effector mechanisms in the Drosophila immune system and leads to a pro-inflammatory state. PLoS One 10: e0136593. PubMed PMC
Asha H., Nagy I., Kovacs G., Stetson D., Ando I., et al. , 2003. Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163: 203–215. PubMed PMC
Bangi E., 2013. Drosophila at the intersection of infection, inflammation, and cancer. Front. Cell. Infect. Microbiol. 3: 103. PubMed PMC
Brumby A. M., Richardson H. E., 2003. Scribble mutants cooperate with oncogenic Ras or notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22: 5769–5779. PubMed PMC
Brumby A. M., Richardson H. E., 2005. Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5: 626–639. PubMed
Carvalho L., Jacinto A., Matova N., 2014. The Toll/NF-kappaB signaling pathway is required for epidermal wound repair in Drosophila. Proc. Natl. Acad. Sci. USA 111: E5373–E5382. PubMed PMC
Castillo J. C., Creasy T., Kumari P., Shetty A., Shokal U., et al. , 2015. Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. BMC Genomics 16: 519. PubMed PMC
Christofi T., Apidianakis Y., 2013. Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites. Gut Microbes 4: 54–59. PubMed PMC
Crozatier M., Vincent A., 2011. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis. Model. Mech. 4: 439–445. PubMed PMC
Dantoft W., Davis M. M., Lindvall J. M., Tang X., Uvell H., et al. , 2013. The Oct1 homolog nubbin is a repressor of NF-kappaB-dependent immune gene expression that increases the tolerance to gut microbiota. BMC Biol. 11: 99. PubMed PMC
Defaye A., Evans I., Crozatier M., Wood W., Lemaitre B., et al. , 2009. Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J. Innate Immun. 1: 322–334. PubMed
Dietzl G., Chen D., Schnorrer F., Su K. C., Barinova Y., et al. , 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156. PubMed
Forconi F., Moss P., 2015. Perturbation of the normal immune system in patients with CLL. Blood 126: 573–581. PubMed
Galko M. J., Krasnow M. A., 2004. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2: E239. PubMed PMC
Ganan-Gomez I., Wei Y., Starczynowski D. T., Colla S., Yang H., et al. , 2015. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29: 1458–1469. PubMed PMC
Gateff E., 1978. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200: 1448–1459. PubMed
Gateff E., Gissman L., Shrestha R., Plus N., Pfister H., et al. , 1980. Characterization of two tumorous blood cell lines of Drosophila melanogaster and the viruses they contain, in Invertebrate Systems in Vitro, edited by Kurstak E., Maramorosch K., Duebendorfer A. Elsevier, New York.
Gold K. S., Bruckner K., 2014. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp. Hematol. 42: 717–727. PubMed PMC
Gonzalez C., 2013. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer 13: 172–183. PubMed
Hallem E. A., Rengarajan M., Ciche T. A., Sternberg P. W., 2007. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr. Biol. 17: 898–904. PubMed
Hauling T., Krautz R., Markus R., Volkenhoff A., Kucerova L., et al. , 2014. A Drosophila immune response against Ras-induced overgrowth. Biol. Open 3: 250–260. PubMed PMC
Honti V., Csordas G., Kurucz E., Markus R., Ando I., 2014. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42: 47–56. PubMed
Kanoh H., Kuraishi T., Tong L. L., Watanabe R., Nagata S., et al. , 2015. Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract. Biochem. Biophys. Res. Commun. 467: 400–406. PubMed
Kocks C., Cho J. H., Nehme N., Ulvila J., Pearson A. M., et al. , 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123: 335–346. PubMed
Kucerova L., Broz V., Arefin B., Maaroufi H. O., Hurychova J., et al. , 2015. The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J. Innate Immun. 8: 199–210. PubMed PMC
Kunc M., Arefin B., Hyrsl P., Theopold U., 2017. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly 1–10. PubMed PMC
Kurucz E., Markus R., Zsamboki J., Folkl-Medzihradszky K., Darula Z., et al. , 2007. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17: 649–654. PubMed
Liu D., Shaukat Z., Saint R. B., Gregory S. L., 2015. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 6: 38552–38565. PubMed PMC
Makhijani K., Alexander B., Tanaka T., Rulifson E., Bruckner K., 2011. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138: 5379–5391. PubMed PMC
McCubrey J. A., Steelman L. S., Abrams S. L., Bertrand F. E., Ludwig D. E., et al. , 2008. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22: 708–722. PubMed
Mills C. D., Ley K., 2014. M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun. 6: 716–726. PubMed PMC
Ming M., Obata F., Kuranaga E., Miura M., 2014. Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J. Biol. Chem. 289: 7558–7568. PubMed PMC
Muallem G., Hunter C. A., 2014. ParadYm shift: Ym1 and Ym2 as innate immunological regulators of IL-17. Nat. Immunol. 15: 1099–1100. PubMed
Neyen C., Bretscher A. J., Binggeli O., Lemaitre B., 2014. Methods to study Drosophila immunity. Methods 68: 116–128. PubMed
Niemeyer C. M., 2014. RAS diseases in children. Haematologica 99(11): 1653–1662. PubMed PMC
Pagliarini R. A., Xu T., 2003. A genetic screen in Drosophila for metastatic behavior. Science 302: 1227–1231. PubMed
Parisi F., Stefanatos R. K., Strathdee K., Yu Y., Vidal M., 2014. Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Reports 6: 855–867. PubMed
Pastor-Pareja J. C., Xu T., 2013. Dissecting social cell biology and tumors using Drosophila genetics. Annu. Rev. Genet. 47: 51–74. PubMed PMC
Regan J. C., Brandao A. S., Leitao A. B., Mantas Dias A. R., Sucena E., et al. , 2013. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog. 9: e1003720. PubMed PMC
Risse B., Thomas S., Otto N., Lopmeier T., Valkov D., et al. , 2013. FIM, a novel FTIR-based imaging method for high throughput locomotion analysis. PLoS One 8: e53963. PubMed PMC
Sonoshita M., Cagan R. L., 2017. Modeling human cancers in Drosophila. Curr. Top. Dev. Biol. 121: 287–309. PubMed
Theopold U., Krautz R., Dushay M. S., 2014. The Drosophila clotting system and its messages for mammals. Dev. Comp. Immunol. 42: 42–46. PubMed
Tipping M., Perrimon N., 2014. Drosophila as a model for context-dependent tumorigenesis. J. Cell. Physiol. 229: 27–33. PubMed PMC
Zang Y., Wan M., Liu M., Ke H., Ma S., et al. , 2015. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes. Elife 4: e07187. PubMed PMC