The Immune Phenotype of Three Drosophila Leukemia Models

. 2017 Jul 05 ; 7 (7) : 2139-2149. [epub] 20170705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28476910

Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.

Zobrazit více v PubMed

Anderl I., Vesala L., Ihalainen T. O., Vanha-Aho L. M., Ando I., et al. , 2016.  Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12: e1005746. PubMed PMC

Arefin B., Kucerova L., Dobes P., Markus R., Strnad H., et al. , 2014.  Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J. Innate Immun. 6: 192–204. PubMed PMC

Arefin B., Kucerova L., Krautz R., Kranenburg H., Parvin F., et al. , 2015.  Apoptosis in hemocytes induces a shift in effector mechanisms in the Drosophila immune system and leads to a pro-inflammatory state. PLoS One 10: e0136593. PubMed PMC

Asha H., Nagy I., Kovacs G., Stetson D., Ando I., et al. , 2003.  Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163: 203–215. PubMed PMC

Bangi E., 2013.  Drosophila at the intersection of infection, inflammation, and cancer. Front. Cell. Infect. Microbiol. 3: 103. PubMed PMC

Brumby A. M., Richardson H. E., 2003.  Scribble mutants cooperate with oncogenic Ras or notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22: 5769–5779. PubMed PMC

Brumby A. M., Richardson H. E., 2005.  Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5: 626–639. PubMed

Carvalho L., Jacinto A., Matova N., 2014.  The Toll/NF-kappaB signaling pathway is required for epidermal wound repair in Drosophila. Proc. Natl. Acad. Sci. USA 111: E5373–E5382. PubMed PMC

Castillo J. C., Creasy T., Kumari P., Shetty A., Shokal U., et al. , 2015.  Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. BMC Genomics 16: 519. PubMed PMC

Christofi T., Apidianakis Y., 2013.  Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites. Gut Microbes 4: 54–59. PubMed PMC

Crozatier M., Vincent A., 2011.  Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis. Model. Mech. 4: 439–445. PubMed PMC

Dantoft W., Davis M. M., Lindvall J. M., Tang X., Uvell H., et al. , 2013.  The Oct1 homolog nubbin is a repressor of NF-kappaB-dependent immune gene expression that increases the tolerance to gut microbiota. BMC Biol. 11: 99. PubMed PMC

Defaye A., Evans I., Crozatier M., Wood W., Lemaitre B., et al. , 2009.  Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J. Innate Immun. 1: 322–334. PubMed

Dietzl G., Chen D., Schnorrer F., Su K. C., Barinova Y., et al. , 2007.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156. PubMed

Forconi F., Moss P., 2015.  Perturbation of the normal immune system in patients with CLL. Blood 126: 573–581. PubMed

Galko M. J., Krasnow M. A., 2004.  Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2: E239. PubMed PMC

Ganan-Gomez I., Wei Y., Starczynowski D. T., Colla S., Yang H., et al. , 2015.  Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29: 1458–1469. PubMed PMC

Gateff E., 1978.  Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200: 1448–1459. PubMed

Gateff E., Gissman L., Shrestha R., Plus N., Pfister H., et al. , 1980.  Characterization of two tumorous blood cell lines of Drosophila melanogaster and the viruses they contain, in Invertebrate Systems in Vitro, edited by Kurstak E., Maramorosch K., Duebendorfer A. Elsevier, New York.

Gold K. S., Bruckner K., 2014.  Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp. Hematol. 42: 717–727. PubMed PMC

Gonzalez C., 2013.  Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer 13: 172–183. PubMed

Hallem E. A., Rengarajan M., Ciche T. A., Sternberg P. W., 2007.  Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr. Biol. 17: 898–904. PubMed

Hauling T., Krautz R., Markus R., Volkenhoff A., Kucerova L., et al. , 2014.  A Drosophila immune response against Ras-induced overgrowth. Biol. Open 3: 250–260. PubMed PMC

Honti V., Csordas G., Kurucz E., Markus R., Ando I., 2014.  The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42: 47–56. PubMed

Kanoh H., Kuraishi T., Tong L. L., Watanabe R., Nagata S., et al. , 2015.  Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract. Biochem. Biophys. Res. Commun. 467: 400–406. PubMed

Kocks C., Cho J. H., Nehme N., Ulvila J., Pearson A. M., et al. , 2005.  Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123: 335–346. PubMed

Kucerova L., Broz V., Arefin B., Maaroufi H. O., Hurychova J., et al. , 2015.  The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J. Innate Immun. 8: 199–210. PubMed PMC

Kunc M., Arefin B., Hyrsl P., Theopold U., 2017.  Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly 1–10. PubMed PMC

Kurucz E., Markus R., Zsamboki J., Folkl-Medzihradszky K., Darula Z., et al. , 2007.  Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17: 649–654. PubMed

Liu D., Shaukat Z., Saint R. B., Gregory S. L., 2015.  Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 6: 38552–38565. PubMed PMC

Makhijani K., Alexander B., Tanaka T., Rulifson E., Bruckner K., 2011.  The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138: 5379–5391. PubMed PMC

McCubrey J. A., Steelman L. S., Abrams S. L., Bertrand F. E., Ludwig D. E., et al. , 2008.  Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22: 708–722. PubMed

Mills C. D., Ley K., 2014.  M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun. 6: 716–726. PubMed PMC

Ming M., Obata F., Kuranaga E., Miura M., 2014.  Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J. Biol. Chem. 289: 7558–7568. PubMed PMC

Muallem G., Hunter C. A., 2014.  ParadYm shift: Ym1 and Ym2 as innate immunological regulators of IL-17. Nat. Immunol. 15: 1099–1100. PubMed

Neyen C., Bretscher A. J., Binggeli O., Lemaitre B., 2014.  Methods to study Drosophila immunity. Methods 68: 116–128. PubMed

Niemeyer C. M., 2014.  RAS diseases in children. Haematologica 99(11): 1653–1662. PubMed PMC

Pagliarini R. A., Xu T., 2003.  A genetic screen in Drosophila for metastatic behavior. Science 302: 1227–1231. PubMed

Parisi F., Stefanatos R. K., Strathdee K., Yu Y., Vidal M., 2014.  Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Reports 6: 855–867. PubMed

Pastor-Pareja J. C., Xu T., 2013.  Dissecting social cell biology and tumors using Drosophila genetics. Annu. Rev. Genet. 47: 51–74. PubMed PMC

Regan J. C., Brandao A. S., Leitao A. B., Mantas Dias A. R., Sucena E., et al. , 2013.  Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog. 9: e1003720. PubMed PMC

Risse B., Thomas S., Otto N., Lopmeier T., Valkov D., et al. , 2013.  FIM, a novel FTIR-based imaging method for high throughput locomotion analysis. PLoS One 8: e53963. PubMed PMC

Sonoshita M., Cagan R. L., 2017.  Modeling human cancers in Drosophila. Curr. Top. Dev. Biol. 121: 287–309. PubMed

Theopold U., Krautz R., Dushay M. S., 2014.  The Drosophila clotting system and its messages for mammals. Dev. Comp. Immunol. 42: 42–46. PubMed

Tipping M., Perrimon N., 2014.  Drosophila as a model for context-dependent tumorigenesis. J. Cell. Physiol. 229: 27–33. PubMed PMC

Zang Y., Wan M., Liu M., Ke H., Ma S., et al. , 2015.  Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes. Elife 4: e07187. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...