The role of nitric oxide during embryonic epidermis development of Xenopus laevis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28483981
PubMed Central
PMC5483018
DOI
10.1242/bio.023739
PII: bio.023739
Knihovny.cz E-zdroje
- Klíčová slova
- Development, Epidermis, Mucociliary epithelium, Nitric oxide, Xenopus laevis,
- Publikační typ
- časopisecké články MeSH
Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development. Xenopus embryonic epidermis has become a useful model reflecting human epithelial tissue composition. The developing epidermis of Xenopus laevis is formed from specialized ionocytes, multi-ciliated, goblet and small secretory cells. We found that NO is mainly produced in multi-ciliated cells and ionocytes. Production of NO during early developmental stages is required for formation of multi-ciliated cells, ionocytes and small secretory cells by regulation of epidermal-specific gene expression. The data from this research indicate a novel role of NO during development, which supports recent findings of NO production in human mucociliary and epithelium development.
Zobrazit více v PubMed
Albina J. E., Cui S., Mateo R. B. and Reichner J. S. (1993). Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150, 5080-5085. PubMed
Alpert M. H., Zhang H., Molinari M., Heitler W. J. and Sillar K. T. (2007). Nitric oxide modulation of the electrically excitable skin of Xenopus laevis frog tadpoles. J. Exp. Biol. 210, 3910-3918. 10.1242/jeb.009662 PubMed DOI
Arnold W. P., Mittal C. K., Katsuki S. and Murad F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74, 3203-3207. 10.1073/pnas.74.8.3203 PubMed DOI PMC
Billett F. S. and Gould R. P. (1971). Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. J. Anat. 108, 465-480. PubMed PMC
Bogdan C. (2001). Nitric oxide and the regulation of gene expression. Trends Cell Biol. 11, 66-75. 10.1016/S0962-8924(00)01900-0 PubMed DOI
Bolger A. M., Lohse M. and Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114-2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R. and Snyder S. H. (1991). Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351, 714-718. 10.1038/351714a0 PubMed DOI
Brunelli E., Perrotta I., Talarico E. and Tripepi S. (2005). Localization of two nitric oxide synthase isoforms, Enos and Inos, in the skin of Triturus Italicus (Amphibia, Urodela) during development. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 142, 249-255. 10.1016/j.cbpa.2005.07.004 PubMed DOI
Chang C. and Hemmati-Brivanlou A. (1998). Cell fate determination in embryonic ectoderm. J. Neurobiol. 36, 128-151. 10.1002/(SICI)1097-4695(199808)36:2<128::AID-NEU3>3.0.CO;2-3 PubMed DOI
Chang H.-R., Tsao D.-A., Wang S.-R. and Yu H.-S. (2003). Expression of nitric oxide synthases in keratinocytes after Uvb irradiation. Arch. Dermatol. Res. 295, 293-296. 10.1007/s00403-003-0433-4 PubMed DOI
Cui X., Zhang J., Ma P., Myers D. E., Goldberg I. G., Sittler K. J., Barb J. J., Munson P. J., Cintron Adel P., McCoy J. P. et al. (2005). Cgmp-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics 6, 151 10.1186/1471-2164-6-151 PubMed DOI PMC
Deblandre G. A., Wettstein D. A., Koyano-Nakagawa N. and Kintner C. (1999). A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715-4728. PubMed
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M. and Gingeras T. R. (2013). Star: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Dubaissi E. and Papalopulu N. (2011). Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis. Model. Mech. 4, 179-192. 10.1242/dmm.006494 PubMed DOI PMC
Dubaissi E., Rousseau K., Lea R., Soto X., Nardeosingh S., Schweickert A., Amaya E., Thornton D. J. and Papalopulu N. (2014). A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 141, 1514-1525. 10.1242/dev.102426 PubMed DOI PMC
Fisher G. J., Kang S., Varani J., Bata-Csorgo Z., Wan Y., Datta S. and Voorhees J. J. (2002). Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138, 1462-1470. 10.1001/archderm.138.11.1462 PubMed DOI
Francis S. H., Busch J. L., Corbin J. D. and Sibley D. (2010). Cgmp-dependent protein kinases and Cgmp phosphodiesterases in nitric oxide and Cgmp action. Pharmacol. Rev. 62, 525-563. 10.1124/pr.110.002907 PubMed DOI PMC
Gouge R. C., Marshburn P., Gordon B. E., Nunley W. and Huet-Hudson Y. M. (1998). Nitric oxide as a regulator of embryonic development. Biol. Reprod. 58, 875-879. 10.1095/biolreprod58.4.875 PubMed DOI
Handy R. L. C., Harb H. L., Wallace P., Gaffen Z., Whitehead K. J. and Moore P. K. (1996). Inhibition of nitric oxide synthase by 1-(2-Trifluoromethylphenyl) imidazole (Trim) in vitro: antinociceptive and cardiovascular effects. Br. J. Pharmacol. 119, 423-431. 10.1111/j.1476-5381.1996.tb16003.x PubMed DOI PMC
Hayes J. M., Kim S. K., Abitua P. B., Park T. J., Herrington E. R., Kitayama A., Grow M. W., Ueno N. and Wallingford J. B. (2007). Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev. Biol. 312, 115-130. 10.1016/j.ydbio.2007.09.031 PubMed DOI PMC
Ichihashi M., Ueda M., Budiyanto A., Bito T., Oka M., Fukunaga M., Tsuru K. and Horikawa T. (2003). Uv-induced skin damage. Toxicology 189, 21-39. 10.1016/S0300-483X(03)00150-1 PubMed DOI
Jackson C. L., Lucas J. S., Walker W. T., Owen H., Premadeva I. and Lackie P. M. (2015). Neuronal Nos localises to human airway cilia. Nitric Oxide-Biol. Chem. 44, 3-7. 10.1016/j.niox.2014.11.003 PubMed DOI
Jacox L., Sindelka R., Chen J., Rothman A., Dickinson A. and Sive H. (2014). The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling. Cell Rep. 8, 596-609. 10.1016/j.celrep.2014.06.026 PubMed DOI PMC
Jain B., Rubinstein I., Robbins R. A., Leise K. L. and Sisson J. H. (1993). Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem. Biophys. Res. Commun. 191, 83-88. 10.1006/bbrc.1993.1187 PubMed DOI
Jiao J., Han D., Meng N., Jin S. and Zhang L. (2010). Regulation of tracheal ciliary beat frequency by nitric oxide synthase substrate l-arginine. ORL J. Otorhinolaryngol. Relat. Spec. 72, 6-11. 10.1159/000265683 PubMed DOI
Knowles R. G. and Moncada S. (1994). Nitric oxide synthases in mammals. Biochem. J. 298, 249-258. 10.1042/bj2980249 PubMed DOI PMC
Kopylova E., Noe L. and Touzet H. (2012). Sortmerna: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217. 10.1093/bioinformatics/bts611 PubMed DOI
Love M. I., Huber W. and Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with Deseq2. Genome Biol. 15, 550 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mall M. A. (2008). Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J. Aerosol. Med. Pulm. Drug Deliv. 21, 13-24. 10.1089/jamp.2007.0659 PubMed DOI
Marcet B., Chevalier B., Luxardi G., Coraux C., Zaragosi L.-E., Cibois M., Robbe-Sermesant K., Jolly T., Cardinaud B., Moreilhon C. et al. (2011). Control of vertebrate multiciliogenesis by Mir-449 through direct repression of the Delta/Notch Pathway (Vol 13, Pg 693, 2011). Nat. Cell Biol. 13, 1280-1280 10.1038/ncb2358 PubMed DOI
Marnellos G., Deblandre G. A., Mjolsness E. and Kintner C. (2000). Delta-Notch lateral inhibitory patterning in the emergence of ciliated cells in xenopus: experimental observations and a gene network model. Pac. Symp. Biocomput. 5, 326-337. PubMed
Marshall W. F. and Kintner C. (2008). Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 20, 48-52. 10.1016/j.ceb.2007.11.009 PubMed DOI PMC
Mitchell B., Jacobs R., Li J., Chien S. and Kintner C. (2007). A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97-101. 10.1038/nature05771 PubMed DOI
Nagata S., Nakanishi M., Nanba R. and Fujita N. (2003). Developmental expression of Xeel, a novel molecule of the Xenopus oocyte cortical granule lectin family. Dev. Genes Evol. 213, 368-370. 10.1007/s00427-003-0341-9 PubMed DOI
Nieuwkoop P. D. and Faber J. (1994). Normal Table of Xenopus Laevis (Daudin). New York: Garland Publishing Inc.
Noiret M., Mottier S., Angrand G., Gautier-Courteille C., Lerivray H., Viet J., Paillard L., Mereau A., Hardy S. and Audic Y. (2016). Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways. Dev. Biol. 409, 489-501. 10.1016/j.ydbio.2015.11.002 PubMed DOI
Oberprieler N. G., Roberts W., Riba R., Graham A. M., Homer-Vanniasinkam S. and Naseem K. M. (2007). Cgmp-independent inhibition of integrin Alphaiibbeta3-mediated platelet adhesion and outside-in signalling by nitric oxide. FEBS Lett. 581, 1529-1534. 10.1016/j.febslet.2007.02.072 PubMed DOI
Palmer R. M. J., Ferrige A. G. and Moncada S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526. 10.1038/327524a0 PubMed DOI
Peus D., Vasa R. A., Meves A., Pott M., Beyerle A., Squillace K. and Pittelkow M. R. (1998). H2o2 is an important mediator of Uvb-induced Egf-receptor phosphorylation in cultured keratinocytes. J. Invest. Dermatol. 110, 966-971. 10.1046/j.1523-1747.1998.00210.x PubMed DOI
Pfeilschifter J., Eberhardt W. and Beck K.-F. (2001). Regulation of gene expression by nitric oxide. Pflugers Arch. 442, 479-486. 10.1007/s004240100586 PubMed DOI
Pilz R. B., Suhasini M., Idriss S., Meinkoth J. L. and Boss G. R. (1995). Nitric oxide and Cgmp analogs activate transcription from Ap-1-responsive promoters in mammalian cells. FASEB J. 9, 552-558. PubMed
Quigley I. K., Stubbs J. L. and Kintner C. (2011). Specification of ion transport cells in the Xenopus larval skin. Development 138, 705-714. 10.1242/dev.055699 PubMed DOI PMC
Shimizu Y., Sakai M., Umemura Y. and Ueda H. (1997). Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J. Dermatol. 24, 80-87. 10.1111/j.1346-8138.1997.tb02748.x PubMed DOI
Sive H. L., Grainger R. M. and Harland R. M. (2000). Early Development of Xenopus Laevis: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
Stubbs J. L., Davidson L., Keller R. and Kintner C. (2006). Radial intercalation of ciliated cells during xenopus skin development. Development 133, 2507-2515. 10.1242/dev.02417 PubMed DOI
Tapia-Limonchi R., Cahuana G. M., Caballano-Infantes E., Salguero-Aranda C., Beltran-Povea A., Hitos A. B., Hmadcha A., Martin F., Soria B., Bedoya F. J. et al. (2016). Nitric oxide prevents mouse embryonic stem cell differentiation through regulation of gene expression, cell signaling, and control of cell proliferation. J. Cell. Biochem. 117, 2078-2088. 10.1002/jcb.25513 PubMed DOI
Tsao P.-N., Vasconcelos M., Izvolsky K. I., Qian J., Lu J. and Cardoso W. V. (2009). Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297-2307. 10.1242/dev.034884 PubMed DOI PMC
Walentek P., Bogusch S., Thumberger T., Vick P., Dubaissi E., Beyer T., Blum M. and Schweickert A. (2014). A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles. Development 141, 1526-1533. 10.1242/dev.102343 PubMed DOI
Walentek P., Beyer T., Hagenlocher C., Müller C., Feistel K., Schweickert A., Harland R. M. and Blum M. (2015). Atp4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev. Biol. 408, 292-304. 10.1016/j.ydbio.2015.03.013 PubMed DOI PMC
Wang R., Ghahary A., Shen Y. J., Scott P. G. and Tredget E. E. (1996). Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J. Invest. Dermatol. 106, 419-427. 10.1111/1523-1747.ep12343428 PubMed DOI
West A. R., Galloway M. P. and Grace A. A. (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44, 227-245. 10.1002/syn.10076 PubMed DOI
Wettstein D. A., Turner D. L. and Kintner C. (1997). The Xenopus homolog of Drosophila suppressor of hairless mediates notch signaling during primary neurogenesis. Development 124, 693-702. PubMed
Wildling S. and Kerschbaum H. H. (2007). Nitric oxide decreases ammonium release in tadpoles of the clawed frog, Xenopus laevis, Daudin. J. Comp. Physiol. B 177, 401-411. 10.1007/s00360-006-0139-y PubMed DOI
Xu J., Kim G.-M., Chen S., Yan P., Ahmed S. H., Ku G., Beckman J. S., Xu X. M. and Hsu C. Y. (2001). Inos and nitrotyrosine expression after spinal cord injury. J. Neurotrauma 18, 523-532. 10.1089/089771501300227323 PubMed DOI