Hyperoside as a UV Photoprotective or Photostimulating Compound-Evaluation of the Effect of UV Radiation with Selected UV-Absorbing Organic Compounds on Skin Cells

. 2023 Jun 08 ; 24 (12) : . [epub] 20230608

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37373060

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Ultraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation. Their protective effects on skin cell viability, ROS production, mitochondrial membrane potential, liposomal permeability, and DNA integrity were investigated. Only some of the compounds studied, such as trans-urocanic acid and hyperoside, had a significant effect on the examined hallmarks of UV-induced cell damage. This was also confirmed by an atomic force microscopy study of morphological changes in HaCaT cells or a study conducted on a 3D skin model. In conclusion, hyperoside was found to be a very effective UV-protective compound, especially against UVA radiation. Commonly used sunscreen compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 3-(4-methylbenzylidene)camphor turned out to be only physical UV filters, and pachypodol with a relatively high absorption in the UVA region was shown to be more phototoxic than photoprotective.

Zobrazit více v PubMed

Friedman B.J., Lim H.W., Wang S.Q. Photoprotection and Photoaging. In: Wang S.Q., Lim H.W., editors. Principles and Practice of Photoprotection. Adis; Basel, Switzerland: 2016. pp. 61–74.

Yin R., Chen Q., Hamblin M.R. Skin Photoaging. Morgan & Claypool Publishers; San Rafael, CA, USA: 2015. pp. 1–56.

Krutmann J., Yarosh D. Modern Photoprotection of Human Skin. In: Gilchrest B.A., Krutmann J., editors. Skin Aging. Springer; Berlin/Heidelberg, Germany: 2006. pp. 103–112.

Wondrak G.T., Jacobson M.K., Jacobson E.L. Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 2006;5:215–237. doi: 10.1039/b504573h. PubMed DOI

Wilson B.D., Moon S., Armstrong F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J. Clin. Aesthet. Dermatol. 2012;5:18–23. PubMed PMC

Cantrell A., McGarvey D.J., Truscott T.G. Photochemical and photophysical properties of sunscreens. In: Giacomoni P.U., editor. Sun Protection in Man. Elsevier Science; Amsterdam, The Netherlands: 2001. pp. 495–519.

Rai R., Shanmuga S.C., Srinivas C. Update on photoprotection. Indian J. Dermatol. 2012;57:335–342. doi: 10.4103/0019-5154.100472. PubMed DOI PMC

Dunaway S., Odin R., Zhou L., Ji L., Zhang Y., Kadekaro A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018;9:392. doi: 10.3389/fphar.2018.00392. PubMed DOI PMC

Riaz A., Rasul A., Hussain G., Zahoor M.K., Jabeen F., Subhani Z., Younis T., Ali M., Sarfraz I., Selamoglu Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018;2018:9794625. doi: 10.1155/2018/9794625. PubMed DOI PMC

Kim E.K., Kim J.H., Jeong S., Choi Y.W., Choi H.J., Kim C.Y., Kim Y.M. Pachypodol, a methoxyflavonoid isolated from Pogostemon cablin Bentham exerts antioxidant and cytoprotective effects in HepG2 cells: Possible role of ERK-dependent Nrf2 activation. Int. J. Mol. Sci. 2019;20:4082. doi: 10.3390/ijms20174082. PubMed DOI PMC

Nichols J.A., Kariyar S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010;302:71–83. doi: 10.1007/s00403-009-1001-3. PubMed DOI PMC

González S., Gilaberte-Calzada Y. Oral and other non-sunscreen photoprotective agents. In: Draelos Z.D., Lim H.W., editors. Clinical Guide to Sunscreens and Photoprotection. Informa Healthcare; New York, NY, USA: 2009. pp. 207–222.

Bajgar R., Moukova A., Chalupnikova N., Kolarova H. Differences in the effects of broad-band UVA and narrow-band UVB on epidermal keratinocytes. Int. J. Environ. Res. Public Health. 2021;18:12480. doi: 10.3390/ijerph182312480. PubMed DOI PMC

Manisova B., Binder S., Malina L., Jiravova J., Langova K., Kolarova H. Phthalocyanine-mediated photodynamic treatment of tumoural and non-tumoural cell lines. Anticancer Res. 2015;35:3943–3951. PubMed

Kollias N., Ruvolo E., Jr., Sayre R.M. The value of the ratio of UVA to UVB in sunlight. Photochem. Photobiol. 2011;87:1474–1475. doi: 10.1111/j.1751-1097.2011.00980.x. PubMed DOI

Tarasick D.W., Fioletov V.E., Wardle D.I., Kerr J.B., McArthur L.J.B., McLinden C.A. Climatology and trends of surface UV radiation: Survey article. Atmos.-Ocean. 2003;41:121–138. doi: 10.3137/ao.410202. DOI

McKenzie R., Smale D., Kotkamp M. Relationship between UVB and erythemally weighted radiation. Photochem. Photobiol. Sci. 2004;3:252–256. doi: 10.1039/b312985c. Erratum in Photochem. Photobiol. Sci. 2009, 8, 1755. PubMed DOI

Guo H., Li J. Flavonoids of Cuscuta australis R. Br. Zhongguo Zhong Yao Za Zhi China J. Chin. Mater. Med. 1997;22:38–39. PubMed

Wang Q., Wei H.C., Zhou S.J., Li Y., Zheng T.T., Zhou C.Z., Wan X.H. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother. Res. 2022;36:2779–2802. doi: 10.1002/ptr.7478. PubMed DOI

Çitoğlu G.S., Sever B., Antus S., Baitz-Gács E., Altanlar N. Antifungal diterpenoids and flavonoids from Ballota inaequidens. Pharm. Biol. 2005;42:659–663. doi: 10.1080/13880200490902626. DOI

Kaneko K., Smetana-Just U., Matsui M., Young A.R., John S., Norval M., Walker S.L. cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J. Immunol. 2008;181:217–224. doi: 10.4049/jimmunol.181.1.217. PubMed DOI

Yang B., Yang Q., Yang X., Yan H.B., Lu Q.P. Hyperoside protects human primary melanocytes against H2O2-induced oxidative damage. Mol. Med. Rep. 2016;13:4613–4619. doi: 10.3892/mmr.2016.5107. PubMed DOI PMC

Chen D., Wu Y.X., Qiu Y.B., Wan B.B., Liu G., Chen J.L., Lu M.D., Pang Q.F. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 2020;67:153138. doi: 10.1016/j.phymed.2019.153138. PubMed DOI

Hu Z., Zhao P., Xu H. Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol. Rep. 2020;43:617–624. doi: 10.3892/or.2019.7440. PubMed DOI

Li Y., Wang Y., Li L., Kong R., Pan S., Ji L., Liu H., Chen H., Sun B. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumour Biol. 2016;37:7345–7355. doi: 10.1007/s13277-015-4552-2. PubMed DOI

Aranda-Rivera A.K., Cruz-Gregorio A., Arancibia-Hernández Y.L., Hernández-Cruz E.Y., Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen. 2022;2:437–478. doi: 10.3390/oxygen2040030. DOI

Hanson K.M., Gratton E., Bardeen C.J. Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic. Biol. Med. 2006;41:1205–1212. doi: 10.1016/j.freeradbiomed.2006.06.011. PubMed DOI

González M.T., Fumagalli F., Benevenuto C.G., da Silva Emery F., Gaspar L.R. Novel benzophenone-3 derivatives with promising potential as UV filters: Relationship between structure, photoprotective potential and phototoxicity. Eur. J. Pharm. Sci. 2017;101:200–210. doi: 10.1016/j.ejps.2017.02.014. PubMed DOI

Amar S.K., Goyal S., Dubey D., Srivastav A.K., Chopra D., Singh J., Shankar J., Chaturvedi R.K., Ray R.S. Benzophenone 1 induced photogenotoxicity and apoptosis via release of cytochrome c and Smac/DIABLO at environmental UV radiation. Toxicol. Lett. 2015;239:182–193. doi: 10.1016/j.toxlet.2015.09.024. PubMed DOI

Lohan S.B., Vitt K., Scholz P., Keck C.M., Meinke M.C. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation. Chem. Biol. Interact. 2018;280:1–7. doi: 10.1016/j.cbi.2017.12.002. PubMed DOI

Wang L., Yue Z., Guo M., Fang L., Bai L., Li X., Tao Y., Wang S., Liu Q., Zhi D., et al. Dietary flavonoid hyperoside induces apoptosis of activated human LX-2 hepatic stellate cell by suppressing canonical NF-κB signaling. Biomed. Res. Int. 2016;2016:1068528. doi: 10.1155/2016/1068528. PubMed DOI PMC

Piao M.J., Kang K.A., Zhang R., Ko D.O., Wang Z.H., You H.J., Kim H.S., Kim J.S., Kang S.S., Hyun J.W. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta. 2008;1780:1448–1457. doi: 10.1016/j.bbagen.2008.07.012. PubMed DOI

Zeng K., Wang X., Fu H., Liu G. Protective effects and mechanism of hyperin on CoCl2-induced PC12 cells. Zhongguo Zhong Yao Za Zhi China J. Chin. Mater. Med. 2011;36:2409–2412. PubMed

Denning M.F., Wang Y., Tibudan S., Alkan S., Nickoloff B.J., Qin J.Z. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ. 2002;9:40–52. doi: 10.1038/sj.cdd.4400929. PubMed DOI

Hass U., Christiansen S., Axelstad M., Boberg J., Andersson A.-M., Skakkebæk N.E., Bay K., Holbech H., Kinnberg K.L., Bjerregaard P. Evaluation of 22 SIN List 2.0 Substances According to the Danish Proposal on Criteria for Endocrine Disrupters. DTU Food; Copenhagen, Denmark: 2012. pp. 1–141. Report from Danish Centre on Endocrine Disrupters.

Wnuk A., Rzemieniec J., Lasoń W., Krzeptowski W., Kajta M. Apoptosis induced by the UV filter Benzophenone-3 in mouse neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling. Mol. Neurobiol. 2018;55:2362–2383. doi: 10.1007/s12035-017-0480-z. PubMed DOI PMC

Obermüller-Jevic U.C., Schlegel B., Flaccus A., Biesalski H.K. The effect of beta-carotene on the expression of interleukin-6 and heme oxygenase-1 in UV-irradiated human skin fibroblasts in vitro. FEBS Lett. 2001;509:186–190. doi: 10.1016/S0014-5793(01)03169-6. PubMed DOI

Siems W., Sommerburg O., Schild L., Augustin W., Langhans C.D., Wiswedel I. Beta-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J. 2002;16:1289–1291. doi: 10.1096/fj.01-0765fje. PubMed DOI

Sliwa A., Góralska J., Czech U., Gruca A., Polus A., Zapała B., Dembińska-Kieć A. Modulation of the human preadipocyte mitochondrial activity by beta-carotene. Acta Biochim. Pol. 2012;59:39–41. doi: 10.18388/abp.2012_2167. PubMed DOI

Akçakaya H., Tok S., Dal F., Cinar S.A., Nurten R. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. Cell Biol. Int. 2017;41:309–319. doi: 10.1002/cbin.10727. PubMed DOI

Qiu J., Zhang T., Zhu X., Yang C., Wang Y., Zhou N., Ju B., Zhou T., Deng G., Qiu C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2019;21:131. doi: 10.3390/ijms21010131. PubMed DOI PMC

Jia X.B., Zhang Q., Xu L., Yao W.J., Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res. 2021;54:7. doi: 10.1186/s40659-021-00330-w. PubMed DOI PMC

Li F.R., Yu F.X., Yao S.T., Si Y.H., Zhang W., Gao L.L. Hyperin extracted from Manchurian rhododendron leaf induces apoptosis in human endometrial cancer cells through a mitochondrial pathway. Asian Pac. J. Cancer Prev. 2012;13:3653–3656. doi: 10.7314/APJCP.2012.13.8.3653. PubMed DOI

Wei H., Cai Q., Rahn R., Zhang X. Singlet Oxygen Involvement in Ultraviolet (254 nm) Radiation-Induced Formation of 8-Hydroxy-Deoxyguanosine in DNA. Free Radic. Biol. Med. 1997;23:148–154. doi: 10.1016/S0891-5849(96)00526-6. PubMed DOI

SCCS (Scientific Committee on Consumer Safety) Opinion on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5), Preliminary Version of 15 December 2020, Final Version of 30–31 March 2021, SCCS/1625/20. [(accessed on 8 May 2023)]. Available online: https://health.ec.europa.eu/publications/benzophenone-3_en.

SCCS (Scientific Committee on Consumer Safety) Scientific Opinion on 4-Methylbenzylidene Camphor (4-MBC), Preliminary Version of 22 December, Final Version of 29 April 2022, SCCS/1640/21. [(accessed on 8 May 2023)]. Available online: https://health.ec.europa.eu/publications/4-methylbenzylidene-camphor-4-mbc_en.

Treffel P., Gabard B. Skin penetration and sun protection factor of ultra-violet filters from two vehicles. Pharm. Res. 1996;13:770–774. doi: 10.1023/A:1016012019483. PubMed DOI

Serpone N. Sunscreens and their usefulness: Have we made any progress in the last two decades? Photochem. Photobiol. Sci. 2021;20:189–244. doi: 10.1007/s43630-021-00013-1. PubMed DOI

Ali H.A., Chowdhury A.K., Rahman A.K., Borkowski T., Nahar L., Sarker S.D. Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytother. Res. 2008;22:1684–1687. doi: 10.1002/ptr.2539. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...