Hyperoside as a UV Photoprotective or Photostimulating Compound-Evaluation of the Effect of UV Radiation with Selected UV-Absorbing Organic Compounds on Skin Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
37373060
PubMed Central
PMC10298051
DOI
10.3390/ijms24129910
PII: ijms24129910
Knihovny.cz E-zdroje
- Klíčová slova
- 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 3-(4-methylbenzylidene)camphor, UV-absorbing compounds, astragalin, beta-carotene, hyperoside, pachypodol, phototoxicity, trans-urocanic acid,
- MeSH
- kůže metabolismus MeSH
- kyselina urokanová * farmakologie MeSH
- lidé MeSH
- přípravky chránící proti slunci farmakologie MeSH
- ultrafialové záření * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,4-dihydroxybenzophenone MeSH Prohlížeč
- enzacamene MeSH Prohlížeč
- hyperoside MeSH Prohlížeč
- kyselina urokanová * MeSH
- oxybenzone MeSH Prohlížeč
- přípravky chránící proti slunci MeSH
Ultraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation. Their protective effects on skin cell viability, ROS production, mitochondrial membrane potential, liposomal permeability, and DNA integrity were investigated. Only some of the compounds studied, such as trans-urocanic acid and hyperoside, had a significant effect on the examined hallmarks of UV-induced cell damage. This was also confirmed by an atomic force microscopy study of morphological changes in HaCaT cells or a study conducted on a 3D skin model. In conclusion, hyperoside was found to be a very effective UV-protective compound, especially against UVA radiation. Commonly used sunscreen compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 3-(4-methylbenzylidene)camphor turned out to be only physical UV filters, and pachypodol with a relatively high absorption in the UVA region was shown to be more phototoxic than photoprotective.
Zobrazit více v PubMed
Friedman B.J., Lim H.W., Wang S.Q. Photoprotection and Photoaging. In: Wang S.Q., Lim H.W., editors. Principles and Practice of Photoprotection. Adis; Basel, Switzerland: 2016. pp. 61–74.
Yin R., Chen Q., Hamblin M.R. Skin Photoaging. Morgan & Claypool Publishers; San Rafael, CA, USA: 2015. pp. 1–56.
Krutmann J., Yarosh D. Modern Photoprotection of Human Skin. In: Gilchrest B.A., Krutmann J., editors. Skin Aging. Springer; Berlin/Heidelberg, Germany: 2006. pp. 103–112.
Wondrak G.T., Jacobson M.K., Jacobson E.L. Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 2006;5:215–237. doi: 10.1039/b504573h. PubMed DOI
Wilson B.D., Moon S., Armstrong F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J. Clin. Aesthet. Dermatol. 2012;5:18–23. PubMed PMC
Cantrell A., McGarvey D.J., Truscott T.G. Photochemical and photophysical properties of sunscreens. In: Giacomoni P.U., editor. Sun Protection in Man. Elsevier Science; Amsterdam, The Netherlands: 2001. pp. 495–519.
Rai R., Shanmuga S.C., Srinivas C. Update on photoprotection. Indian J. Dermatol. 2012;57:335–342. doi: 10.4103/0019-5154.100472. PubMed DOI PMC
Dunaway S., Odin R., Zhou L., Ji L., Zhang Y., Kadekaro A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018;9:392. doi: 10.3389/fphar.2018.00392. PubMed DOI PMC
Riaz A., Rasul A., Hussain G., Zahoor M.K., Jabeen F., Subhani Z., Younis T., Ali M., Sarfraz I., Selamoglu Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018;2018:9794625. doi: 10.1155/2018/9794625. PubMed DOI PMC
Kim E.K., Kim J.H., Jeong S., Choi Y.W., Choi H.J., Kim C.Y., Kim Y.M. Pachypodol, a methoxyflavonoid isolated from Pogostemon cablin Bentham exerts antioxidant and cytoprotective effects in HepG2 cells: Possible role of ERK-dependent Nrf2 activation. Int. J. Mol. Sci. 2019;20:4082. doi: 10.3390/ijms20174082. PubMed DOI PMC
Nichols J.A., Kariyar S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010;302:71–83. doi: 10.1007/s00403-009-1001-3. PubMed DOI PMC
González S., Gilaberte-Calzada Y. Oral and other non-sunscreen photoprotective agents. In: Draelos Z.D., Lim H.W., editors. Clinical Guide to Sunscreens and Photoprotection. Informa Healthcare; New York, NY, USA: 2009. pp. 207–222.
Bajgar R., Moukova A., Chalupnikova N., Kolarova H. Differences in the effects of broad-band UVA and narrow-band UVB on epidermal keratinocytes. Int. J. Environ. Res. Public Health. 2021;18:12480. doi: 10.3390/ijerph182312480. PubMed DOI PMC
Manisova B., Binder S., Malina L., Jiravova J., Langova K., Kolarova H. Phthalocyanine-mediated photodynamic treatment of tumoural and non-tumoural cell lines. Anticancer Res. 2015;35:3943–3951. PubMed
Kollias N., Ruvolo E., Jr., Sayre R.M. The value of the ratio of UVA to UVB in sunlight. Photochem. Photobiol. 2011;87:1474–1475. doi: 10.1111/j.1751-1097.2011.00980.x. PubMed DOI
Tarasick D.W., Fioletov V.E., Wardle D.I., Kerr J.B., McArthur L.J.B., McLinden C.A. Climatology and trends of surface UV radiation: Survey article. Atmos.-Ocean. 2003;41:121–138. doi: 10.3137/ao.410202. DOI
McKenzie R., Smale D., Kotkamp M. Relationship between UVB and erythemally weighted radiation. Photochem. Photobiol. Sci. 2004;3:252–256. doi: 10.1039/b312985c. Erratum in Photochem. Photobiol. Sci. 2009, 8, 1755. PubMed DOI
Guo H., Li J. Flavonoids of Cuscuta australis R. Br. Zhongguo Zhong Yao Za Zhi China J. Chin. Mater. Med. 1997;22:38–39. PubMed
Wang Q., Wei H.C., Zhou S.J., Li Y., Zheng T.T., Zhou C.Z., Wan X.H. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother. Res. 2022;36:2779–2802. doi: 10.1002/ptr.7478. PubMed DOI
Çitoğlu G.S., Sever B., Antus S., Baitz-Gács E., Altanlar N. Antifungal diterpenoids and flavonoids from Ballota inaequidens. Pharm. Biol. 2005;42:659–663. doi: 10.1080/13880200490902626. DOI
Kaneko K., Smetana-Just U., Matsui M., Young A.R., John S., Norval M., Walker S.L. cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J. Immunol. 2008;181:217–224. doi: 10.4049/jimmunol.181.1.217. PubMed DOI
Yang B., Yang Q., Yang X., Yan H.B., Lu Q.P. Hyperoside protects human primary melanocytes against H2O2-induced oxidative damage. Mol. Med. Rep. 2016;13:4613–4619. doi: 10.3892/mmr.2016.5107. PubMed DOI PMC
Chen D., Wu Y.X., Qiu Y.B., Wan B.B., Liu G., Chen J.L., Lu M.D., Pang Q.F. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 2020;67:153138. doi: 10.1016/j.phymed.2019.153138. PubMed DOI
Hu Z., Zhao P., Xu H. Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol. Rep. 2020;43:617–624. doi: 10.3892/or.2019.7440. PubMed DOI
Li Y., Wang Y., Li L., Kong R., Pan S., Ji L., Liu H., Chen H., Sun B. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumour Biol. 2016;37:7345–7355. doi: 10.1007/s13277-015-4552-2. PubMed DOI
Aranda-Rivera A.K., Cruz-Gregorio A., Arancibia-Hernández Y.L., Hernández-Cruz E.Y., Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen. 2022;2:437–478. doi: 10.3390/oxygen2040030. DOI
Hanson K.M., Gratton E., Bardeen C.J. Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic. Biol. Med. 2006;41:1205–1212. doi: 10.1016/j.freeradbiomed.2006.06.011. PubMed DOI
González M.T., Fumagalli F., Benevenuto C.G., da Silva Emery F., Gaspar L.R. Novel benzophenone-3 derivatives with promising potential as UV filters: Relationship between structure, photoprotective potential and phototoxicity. Eur. J. Pharm. Sci. 2017;101:200–210. doi: 10.1016/j.ejps.2017.02.014. PubMed DOI
Amar S.K., Goyal S., Dubey D., Srivastav A.K., Chopra D., Singh J., Shankar J., Chaturvedi R.K., Ray R.S. Benzophenone 1 induced photogenotoxicity and apoptosis via release of cytochrome c and Smac/DIABLO at environmental UV radiation. Toxicol. Lett. 2015;239:182–193. doi: 10.1016/j.toxlet.2015.09.024. PubMed DOI
Lohan S.B., Vitt K., Scholz P., Keck C.M., Meinke M.C. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation. Chem. Biol. Interact. 2018;280:1–7. doi: 10.1016/j.cbi.2017.12.002. PubMed DOI
Wang L., Yue Z., Guo M., Fang L., Bai L., Li X., Tao Y., Wang S., Liu Q., Zhi D., et al. Dietary flavonoid hyperoside induces apoptosis of activated human LX-2 hepatic stellate cell by suppressing canonical NF-κB signaling. Biomed. Res. Int. 2016;2016:1068528. doi: 10.1155/2016/1068528. PubMed DOI PMC
Piao M.J., Kang K.A., Zhang R., Ko D.O., Wang Z.H., You H.J., Kim H.S., Kim J.S., Kang S.S., Hyun J.W. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta. 2008;1780:1448–1457. doi: 10.1016/j.bbagen.2008.07.012. PubMed DOI
Zeng K., Wang X., Fu H., Liu G. Protective effects and mechanism of hyperin on CoCl2-induced PC12 cells. Zhongguo Zhong Yao Za Zhi China J. Chin. Mater. Med. 2011;36:2409–2412. PubMed
Denning M.F., Wang Y., Tibudan S., Alkan S., Nickoloff B.J., Qin J.Z. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ. 2002;9:40–52. doi: 10.1038/sj.cdd.4400929. PubMed DOI
Hass U., Christiansen S., Axelstad M., Boberg J., Andersson A.-M., Skakkebæk N.E., Bay K., Holbech H., Kinnberg K.L., Bjerregaard P. Evaluation of 22 SIN List 2.0 Substances According to the Danish Proposal on Criteria for Endocrine Disrupters. DTU Food; Copenhagen, Denmark: 2012. pp. 1–141. Report from Danish Centre on Endocrine Disrupters.
Wnuk A., Rzemieniec J., Lasoń W., Krzeptowski W., Kajta M. Apoptosis induced by the UV filter Benzophenone-3 in mouse neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling. Mol. Neurobiol. 2018;55:2362–2383. doi: 10.1007/s12035-017-0480-z. PubMed DOI PMC
Obermüller-Jevic U.C., Schlegel B., Flaccus A., Biesalski H.K. The effect of beta-carotene on the expression of interleukin-6 and heme oxygenase-1 in UV-irradiated human skin fibroblasts in vitro. FEBS Lett. 2001;509:186–190. doi: 10.1016/S0014-5793(01)03169-6. PubMed DOI
Siems W., Sommerburg O., Schild L., Augustin W., Langhans C.D., Wiswedel I. Beta-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J. 2002;16:1289–1291. doi: 10.1096/fj.01-0765fje. PubMed DOI
Sliwa A., Góralska J., Czech U., Gruca A., Polus A., Zapała B., Dembińska-Kieć A. Modulation of the human preadipocyte mitochondrial activity by beta-carotene. Acta Biochim. Pol. 2012;59:39–41. doi: 10.18388/abp.2012_2167. PubMed DOI
Akçakaya H., Tok S., Dal F., Cinar S.A., Nurten R. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. Cell Biol. Int. 2017;41:309–319. doi: 10.1002/cbin.10727. PubMed DOI
Qiu J., Zhang T., Zhu X., Yang C., Wang Y., Zhou N., Ju B., Zhou T., Deng G., Qiu C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2019;21:131. doi: 10.3390/ijms21010131. PubMed DOI PMC
Jia X.B., Zhang Q., Xu L., Yao W.J., Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res. 2021;54:7. doi: 10.1186/s40659-021-00330-w. PubMed DOI PMC
Li F.R., Yu F.X., Yao S.T., Si Y.H., Zhang W., Gao L.L. Hyperin extracted from Manchurian rhododendron leaf induces apoptosis in human endometrial cancer cells through a mitochondrial pathway. Asian Pac. J. Cancer Prev. 2012;13:3653–3656. doi: 10.7314/APJCP.2012.13.8.3653. PubMed DOI
Wei H., Cai Q., Rahn R., Zhang X. Singlet Oxygen Involvement in Ultraviolet (254 nm) Radiation-Induced Formation of 8-Hydroxy-Deoxyguanosine in DNA. Free Radic. Biol. Med. 1997;23:148–154. doi: 10.1016/S0891-5849(96)00526-6. PubMed DOI
SCCS (Scientific Committee on Consumer Safety) Opinion on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5), Preliminary Version of 15 December 2020, Final Version of 30–31 March 2021, SCCS/1625/20. [(accessed on 8 May 2023)]. Available online: https://health.ec.europa.eu/publications/benzophenone-3_en.
SCCS (Scientific Committee on Consumer Safety) Scientific Opinion on 4-Methylbenzylidene Camphor (4-MBC), Preliminary Version of 22 December, Final Version of 29 April 2022, SCCS/1640/21. [(accessed on 8 May 2023)]. Available online: https://health.ec.europa.eu/publications/4-methylbenzylidene-camphor-4-mbc_en.
Treffel P., Gabard B. Skin penetration and sun protection factor of ultra-violet filters from two vehicles. Pharm. Res. 1996;13:770–774. doi: 10.1023/A:1016012019483. PubMed DOI
Serpone N. Sunscreens and their usefulness: Have we made any progress in the last two decades? Photochem. Photobiol. Sci. 2021;20:189–244. doi: 10.1007/s43630-021-00013-1. PubMed DOI
Ali H.A., Chowdhury A.K., Rahman A.K., Borkowski T., Nahar L., Sarker S.D. Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytother. Res. 2008;22:1684–1687. doi: 10.1002/ptr.2539. PubMed DOI