Functional connectivity models for decoding of spatial representations from hippocampal CA1 recordings

. 2017 Aug ; 43 (1) : 17-33. [epub] 20170508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28484899
Odkazy

PubMed 28484899
DOI 10.1007/s10827-017-0645-9
PII: 10.1007/s10827-017-0645-9
Knihovny.cz E-zdroje

Hippocampus stores spatial representations, or maps, which are recalled each time a subject is placed in the corresponding environment. Across different environments of similar geometry, these representations show strong orthogonality in CA3 of hippocampus, whereas in the CA1 subfield a considerable overlap between the maps can be seen. The lower orthogonality decreases reliability of various decoders developed in an attempt to identify which of the stored maps is active at the moment. Especially, the problem with decoding emerges with a need to analyze data at high temporal resolution. Here, we introduce a functional-connectivity-based decoder, which accounts for the pairwise correlations between the spiking activities of neurons in each map and does not require any positional information, i.e. any knowledge about place fields. We first show, on recordings of hippocampal activity in constant environmental conditions, that our decoder outperforms existing decoding methods in CA1. Our decoder is then applied to data from teleportation experiments, in which an instantaneous switch between the environment identity triggers a recall of the corresponding spatial representation . We test the sensitivity of our approach on the transition dynamics between the respective memory states (maps). We find that the rate of spontaneous state shifts (flickering) after a teleportation event is increased not only within the first few seconds as already reported, but this instability is sustained across much longer (> 1 min.) periods.

Zobrazit více v PubMed

J Neurophysiol. 1998 Feb;79(2):1017-44 PubMed

Bioinformatics. 2016 Oct 15;32(20):3089-3097 PubMed

J Comput Neurosci. 2011 Oct;31(2):199-227 PubMed

J Neurophysiol. 2010 Jul;104(1):35-50 PubMed

Curr Opin Neurobiol. 2008 Dec;18(6):582-8 PubMed

Brain Res. 1971 Nov;34(1):171-5 PubMed

Radiology. 1982 Apr;143(1):29-36 PubMed

Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3182-7 PubMed

Hippocampus. 1994 Jun;4(3):374-91 PubMed

Nature. 2011 Sep 28;478(7368):246-9 PubMed

Comput Stat Data Anal. 2010 Apr 1;54(4):1167-1178 PubMed

Learn Mem. 2006 Jul-Aug;13(4):405-15 PubMed

Phys Rev Lett. 2011 Mar 4;106(9):090601 PubMed

Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24 PubMed

Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 PubMed

Semin Nucl Med. 1978 Oct;8(4):283-98 PubMed

J Comput Neurosci. 2016 Dec;41(3):269-293 PubMed

Phys Rev Lett. 2015 Aug 28;115(9):098101 PubMed

J Neurosci Methods. 2005 Jun 15;144(2):265-79 PubMed

Science. 2005 May 6;308(5723):873-6 PubMed

Neural Comput. 2005 Sep;17(9):1927-61 PubMed

J Comput Neurosci. 2010 Aug;29(1-2):89-105 PubMed

J Neurophysiol. 2005 Feb;93(2):1074-89 PubMed

Nature. 2013 May 30;497(7451):585-90 PubMed

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14058-62 PubMed

Nature. 2006 Apr 20;440(7087):1007-12 PubMed

Nature. 2008 Aug 21;454(7207):995-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...