Design and Synthesis of Mercaptoacetamides as Potent, Selective, and Brain Permeable Histone Deacetylase 6 Inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28523102
PubMed Central
PMC5430401
DOI
10.1021/acsmedchemlett.7b00012
Knihovny.cz E-zdroje
- Klíčová slova
- CNS disorders, HDAC6 inhibitors, brain permeable, mercaptoacetamides,
- Publikační typ
- časopisecké články MeSH
A series of nonhydroxamate HDAC6 inhibitors were prepared in our effort to develop potent and selective compounds for possible use in central nervous system (CNS) disorders, thus obviating the genotoxicity often associated with the hydroxamates. Halogens are incorporated in the cap groups of the designed mercaptoacetamides in order to increase brain accessibility. The indole analogue 7e and quinoline analogue 13a displayed potent HDAC6 inhibitory activity (IC50, 11 and 2.8 nM) and excellent selectivity against HDAC1. Both 7e and 13a together with their ester prodrug 14 and disulfide prodrugs 15 and 16 were found to be effective in promoting tubulin acetylation in HEK cells. The disulfide prodrugs 15 and 16 also released a stable concentration of 7e and 13a upon microsomal incubation. Administration of 15 and 16in vivo was found to trigger an increase of tubulin acetylation in mouse cortex. These results suggest that further exploration of these compounds for the treatment of CNS disorders is warranted.
Zobrazit více v PubMed
Glozak M. A.; Sengupta N.; Zhang X.; Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005, 363, 15–23. 10.1016/j.gene.2005.09.010. PubMed DOI
Xu W. S.; Parmigiani R. B.; Marks P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007, 26, 5541–5552. 10.1038/sj.onc.1210620. PubMed DOI
Minucci S.; Pelicci P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 2006, 6, 38–51. 10.1038/nrc1779. PubMed DOI
Marks P. A.; Dokmanovic M. Histone deacetylase inhibitors: Discovery and development as anticancer agents. Expert Opin. Invest. Drugs 2005, 14, 1497–1511. 10.1517/13543784.14.12.1497. PubMed DOI
Johnstone R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discovery 2002, 1, 287–99. 10.1038/nrd772. PubMed DOI
Walkinshaw D. R.; Tahmasebi S.; Bertos N. R.; Yang X. J. Histone deacetylases as transducers and targets of nuclear signaling. J. Cell. Biochem. 2008, 104, 1541–1552. 10.1002/jcb.21746. PubMed DOI
Lahm A.; Paolini C.; Pallaoro M.; Nardi M.; Jones P.; Neddermann P.; Sambucini S.; Bottomley M.; Lo Surdo P.; Carfi A. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17335–17340. 10.1073/pnas.0706487104. PubMed DOI PMC
Haberland M.; Montgomery R. L.; Olson E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10, 32–42. 10.1038/nrg2485. PubMed DOI PMC
Boyault C.; Zhang Y.; Fritah S.; Caron C.; Gilquin B.; Kwon S. H.; Garrido C.; Yao T. P.; Vourc’h C.; Matthias P.; Khochbin S. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007, 21, 2172–81. 10.1101/gad.436407. PubMed DOI PMC
Simões-Pires C.; Zwick V.; Nurisso A.; Schenker E.; Carrupt P. A.; Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?. Mol. Neurodegener. 2013, 8, 7.10.1186/1750-1326-8-7. PubMed DOI PMC
Li G.; Jiang H.; Chang M.; Xie H.; Hu L. HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J. Neurol. Sci. 2011, 304, 1–8. 10.1016/j.jns.2011.02.017. PubMed DOI
Fukada M.; Hanai A.; Nakayama A.; Suzuki T.; Miyata N.; Rodriguiz R. M; et al. Loss of Deacetylation Activity of Hdac6 Affects Emotional Behavior in Mice. PLoS One 2012, 7, e30924.10.1371/journal.pone.0030924. PubMed DOI PMC
Rivieccio M. A.; Brochier C.; Willis D. E.; Walker B. A.; D’Annibale M. A.; McLaughlin K.; Siddiq A.; Kozikowski A. P.; Jaffrey S. R.; Twiss J. L.; Ratan R. R.; Langley B. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19599–19604. 10.1073/pnas.0907935106. PubMed DOI PMC
Falkenberg K. J.; Johnstone R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discovery 2014, 13, 673–91. 10.1038/nrd4360. PubMed DOI
Thaler F.; Mercurio C. Towards Selective Inhibition of Histone Deacetylase Isoforms: What Has Been Achieved, Where We Are and What Will Be Next. ChemMedChem 2014, 9, 523–526. 10.1002/cmdc.201300413. PubMed DOI
Niesvizky R.; Richardson P. G.; Gabrail N. Y.; Madan S.; Yee A. J.; Quayle S. N.; Almeciga-Pinto I.; Jones S. S.; Houston L.; Hayes D.; Duzer J. V.; Wheeler C.; Trede N. S.; Raje N. S. ACY-241, a Novel, HDAC6 Selective Inhibitor: Synergy with Immunomodulatory (IMiD®) Drugs in Multiple Myeloma (MM) Cells and Early Clinical Results (ACE-MM-200 Study). Blood 2015, 126, 3040–41.
Shen S.; Kozikowski A. P. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget?. ChemMedChem 2016, 11, 15–21. 10.1002/cmdc.201500486. PubMed DOI PMC
Segretti M. C.; Vallerini G. P.; Brochier C.; Langley B.; Wang L.; Hancock W. W.; Kozikowski A. P. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function. ACS Med. Chem. Lett. 2015, 6, 1156–61. 10.1021/acsmedchemlett.5b00303. PubMed DOI PMC
Kozikowski A. P.; Chen Y.; Gaysin A.; Chen B.; D’Annibale M. A.; Suto C. M.; Langley B. C. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J. Med. Chem. 2007, 50, 3054–61. 10.1021/jm070178x. PubMed DOI
Itoh Y.; Suzuki T.; Kouketsu A.; Suzuki N.; Maeda S.; Yoshida M.; Nakagawa H.; Miyata N. Design, synthesis, structure--selectivity relationship, and effect on human cancer cells of a novel series of histone deacetylase 6-selective inhibitors. J. Med. Chem. 2007, 50, 5425–38. 10.1021/jm7009217. PubMed DOI
Suzuki T.; Kouketsu A.; Itoh Y.; Hisakawa S.; Maeda S.; Yoshida M.; Nakagawa H.; Miyata N. Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J. Med. Chem. 2006, 49, 4809–12. 10.1021/jm060554y. PubMed DOI
Giannini G.; Vesci L.; Battistuzzi G.; Vignola D.; Milazzo F. M.; Guglielmi M. B.; Barbarino M.; Santaniello M.; Fantò N.; Mor M.; Rivara S.; Pala D.; Taddei M.; Pisano C.; Cabri W. ST7612AA1, a thioacetate-ω(γ-lactam carboxamide) derivative selected from a novel generation of oral HDAC inhibitors. J. Med. Chem. 2014, 57, 8358–77. 10.1021/jm5008209. PubMed DOI
Nguyen K.; Iskandar M.; Rabenstein D. L. Kinetics and equilibria of cis/trans isomerization of secondary amide peptide bonds in linear and cyclic peptides. J. Phys. Chem. B 2010, 114, 3387–92. 10.1021/jp1000286. PubMed DOI