The correlation theory of the chemical bond

. 2017 May 22 ; 7 (1) : 2237. [epub] 20170522

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28533506
Odkazy

PubMed 28533506
PubMed Central PMC5440380
DOI 10.1038/s41598-017-02447-z
PII: 10.1038/s41598-017-02447-z
Knihovny.cz E-zdroje

The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. These make it possible to characterise quantitatively, how well a bonding picture describes the chemical system. As proof of concept, we apply the theory for the investigation of the bond structures of several molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides a reason for debated bonding picture.

Zobrazit více v PubMed

Wilde, M. M. Quantum Information Theory (Cambridge University Press 2013).

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 1 edn (Cambridge University Press, 2000).

Amico L, Fazio R, Osterloh A, Vedral V. Entanglement in many-body systems. Rev. Mod. Phys. 2008;80:517–576. doi: 10.1103/RevModPhys.80.517. DOI

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev. Mod. Phys. 2009;81:865–942. doi: 10.1103/RevModPhys.81.865. DOI

Modi K, Paterek T, Son W, Vedral V, Williamson M. Unified view of quantum and classical correlations. Phys. Rev. Lett. 2010;104:080501. doi: 10.1103/PhysRevLett.104.080501. PubMed DOI

Legeza Ö, Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B. 2003;68:195116. doi: 10.1103/PhysRevB.68.195116. DOI

Legeza Ö, Sólyom J. Two-site entropy and quantum phase transitions in low-dimensional models. Phys. Rev. Lett. 2006;96:116401. doi: 10.1103/PhysRevLett.96.116401. PubMed DOI

Rissler J, Noack RM, White SR. Measuring orbital interaction using quantum information theory. Chemical Physics. 2006;323:519–531. doi: 10.1016/j.chemphys.2005.10.018. DOI

Pipek J, Nagy I. Measures of spatial entanglement in a two-electron model atom. Phys. Rev. A. 2009;79:052501. doi: 10.1103/PhysRevA.79.052501. DOI

Barcza G, Legeza Ö, Marti KH, Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A. 2011;83:012508. doi: 10.1103/PhysRevA.83.012508. DOI

McKemmish, L. K., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. The Journal of Chemical Physics135 (2011). PubMed

Boguslawski K, Tecmer P, Barcza G, Legeza Ö, Reiher M. Orbital entanglement in bond-formation processes. Journal of Chemical Theory and Computation. 2013;9:2959–2973. doi: 10.1021/ct400247p. PubMed DOI

Kurashige Y, Chan GK-L, Yanai T. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II. Nature Chemistry. 2013;5:660–666. doi: 10.1038/nchem.1677. PubMed DOI

Mottet M, Tecmer P, Boguslawski K, Legeza Ö, Reiher M. Quantum entanglement in carbon-carbon, carbon-phosphorus and silicon-silicon bonds. Phys. Chem. Chem. Phys. 2014;16:8872–8880. doi: 10.1039/c4cp00277f. PubMed DOI

Fertitta E, Paulus B, Barcza G, Legeza Ö. Investigation of metal-insulator-like transition through the ab initio density matrix renormalization group approach. Phys. Rev. B. 2014;90:245129. doi: 10.1103/PhysRevB.90.245129. DOI

Duperrouzel C, et al. A quantum informational approach for dissecting chemical reactions. Chemical Physics Letters. 2015;621:160–164. doi: 10.1016/j.cplett.2015.01.005. DOI

Boguslawski K, Tecmer P. Orbital entanglement in quantum chemistry. International Journal of Quantum Chemistry. 2015;115:1289–1295. doi: 10.1002/qua.24832. DOI

Freitag L, et al. Orbital entanglement and casscf analysis of the ru-no bond in a ruthenium nitrosyl complex. Phys. Chem. Chem. Phys. 2015;17:14383–14392. doi: 10.1039/C4CP05278A. PubMed DOI PMC

Szilvási, T., Barcza, G. & Legeza, Ö. Concept of chemical bond and aromaticity based on quantum information theory. arXiv [physics.chem-ph] 1509.04241 (2015).

Zhao Y, et al. Dissecting the bond-formation process of d10-metal–ethene complexes with multireference approaches. Theor. Chem. Acc. 2015;134:120. doi: 10.1007/s00214-015-1726-3. DOI

Lewis GN. The atom and the molecule. Journal of the American Chemical Society. 1916;38:762–785. doi: 10.1021/ja02261a002. DOI

Shaik, S. S. & Hiberty, P. C. A Chemist’s Guide to Valence Bond Theory (Wiley 2007).

Bader RFW, Stephens ME. Spatial localization of the electronic pair and number distributions in molecules. Journal of the American Chemical Society. 1975;97:7391–7399. doi: 10.1021/ja00859a001. DOI

Daudel, R. Introduction to the loge theory. In Chalvet, O., Daudel, R., Diner, S. & Malrieu, J. P. (eds) Localization and Delocalization in Quantum Chemistry: Volume I Atoms and Molecules in the Ground State, 3–8 (Springer Netherlands, Dordrecht 1975).

Fleming, I. Molecular Orbitals and Organic Chemical Reactions: Reference Edition (Wiley 2010).

Murg V, Verstraete F, Schneider R, Nagy PR, Legeza Ö. Tree tensor network state with variable tensor order: An efficient multireference method for strongly correlated systems. Journal of Chemical Theory and Computation. 2015;11:1027–1036. doi: 10.1021/ct501187j. PubMed DOI PMC

Szalay Sz. Multipartite entanglement measures. Phys. Rev. A. 2015;92:042329. doi: 10.1103/PhysRevA.92.042329. DOI

Barcza G, Noack RM, Sólyom J, Legeza Ö. Entanglement patterns and generalized correlation functions in quantum many-body systems. Phys. Rev. B. 2015;92:125140. doi: 10.1103/PhysRevB.92.125140. DOI

Shaik S, et al. Quadruple bonding in C2 and analogous eight-valence electron species. Nature Chemistry. 2012;4:195–200. doi: 10.1038/nchem.1263. PubMed DOI

Shaik S, Rzepa HS, Hoffmann R. One molecule, two atoms, three views, four bonds? Angewandte Chemie International Edition. 2013;52:3020–3033. doi: 10.1002/anie.201208206. PubMed DOI

Grunenberg J. Quantum chemistry: Quadruply bonded carbon. Nature Chemistry. 2012;4:154–155. doi: 10.1038/nchem.1274. PubMed DOI

Frenking G, Hermann M. Critical comments on “one molecule, two atoms, three views, four bonds”? Angewandte Chemie International Edition. 2013;52:5922–5925. doi: 10.1002/anie.201301485. PubMed DOI

Zhong R, Zhang M, Xu H, Su Z. Latent harmony in dicarbon between VB and MO theories through orthogonal hybridization of 3σg and 2σu. Chem. Sci. 2016;7:1028–1032. doi: 10.1039/C5SC03437J. PubMed DOI PMC

Pipek J, Mezey PG. A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions. The Journal of Chemical Physics. 1989;90:4916–4926. doi: 10.1063/1.456588. DOI

de Giambiagi MS, Giambiagi M, Jorge FE. Bond index: relation to second-order density matrix and charge fluctuations. Theoretica chimica acta. 1985;68:337–341. doi: 10.1007/BF00529054. DOI

Szalay Sz, et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015;115:1342–1391. doi: 10.1002/qua.24898. DOI

Ohya, M. & Petz, D. Quantum Entropy and Its Use, 1 edn (Springer Verlag 1993).

Araki H, Moriya H. Equilibrium statistical mechanics of fermion lattice systems. Reviews in Mathematical Physics. 2003;15:93–198. doi: 10.1142/S0129055X03001606. DOI

Szalay Sz, Kökényesi Z. Partial separability revisited: Necessary and sufficient criteria. Phys. Rev. A. 2012;86:032341. doi: 10.1103/PhysRevA.86.032341. DOI

Davey, B. A. & Priestley, H. A. Introduction to Lattices and Order, second edn (Cambridge University Press 2002).

Adesso G, Bromley TR, Cianciaruso M. Measures and applications of quantum correlations. Journal of Physics A: Mathematical and Theoretical. 2016;49:473001. doi: 10.1088/1751-8113/49/47/473001. DOI

Lindblad G. Entropy, information and quantum measurements. Communications in Mathematical Physics. 1973;33:305–322. doi: 10.1007/BF01646743. DOI

Horodecki R. Informationally coherent quantum systems. Physics Letters A. 1994;187:145–150. doi: 10.1016/0375-9601(94)90052-3. DOI

Legeza Ö, Sólyom J. Quantum data compression, quantum information generation, and the density-matrix renormalization-group method. Phys. Rev. B. 2004;70:205118. doi: 10.1103/PhysRevB.70.205118. DOI

Legeza Ö, Gebhard F, Rissler J. Entanglement production by independent quantum channels. Phys. Rev. B. 2006;74:195112. doi: 10.1103/PhysRevB.74.195112. DOI

Herbut F. On mutual information in multipartite quantum states and equality in strong subadditivity of entropy. Journal of Physics A: Mathematical and General. 2004;37:3535. doi: 10.1088/0305-4470/37/10/016. DOI

Koashi M, Winter A. Monogamy of quantum entanglement and other correlations. Phys. Rev. A. 2004;69:022309. doi: 10.1103/PhysRevA.69.022309. DOI

White SR, Martin RL. Ab initio quantum chemistry using the density matrix renormalization group. The Journal of Chemical Physics. 1999;110:4127–4130. doi: 10.1063/1.478295. DOI

White SR. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992;69:2863–2866. doi: 10.1103/PhysRevLett.69.2863. PubMed DOI

Marti KH, Reiher M. The density matrix renormalization group algorithm in quantum chemistry. Zeitschrift für Physikalische Chemie. 2010;224:583–599. doi: 10.1524/zpch.2010.6125. DOI

Zgid, D. & Nooijen, M. On the spin and symmetry adaptation of the density matrix renormalization group method. The Journal of Chemical Physics128 (2008). PubMed

Kurashige, Y. & Yanai, T. High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds. The Journal of Chemical Physics130 (2009). PubMed

Legeza, Ö., Rohwedder, T., Schneider, R. & Szalay, Sz. Tensor product approximation (DMRG) and coupled cluster method in quantum chemistry. In Bach, V. & Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, 53–76 (Springer International Publishing 2014).

Wouters, S. & Van Neck, D. The density matrix renormalization group for ab initio quantum chemistry. The European Physical Journal D68 (2014).

Chan GK-L, Kesselman A, Nakatani N, Li Z, White SR. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. The Journal of Chemical Physics. 2016;145:014102. doi: 10.1063/1.4955108. PubMed DOI

Olivares-Amaya, R. et al. The ab-initio density matrix renormalization group in practice. The Journal of Chemical Physics142 (2015). PubMed

Legeza Ö, Röder J, Hess BA. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B. 2003;67:125114. doi: 10.1103/PhysRevB.67.125114. DOI

Kállay, M. et al. MRCC, a quantum chemical program suite, version 2016-07-15 www.mrcc.hu. (2016).

Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. The Journal of Chemical Physics. 2013;139:094105. doi: 10.1063/1.4819401. PubMed DOI

Mester D, Csontos J, Kállay M. Unconventional bond functions for quantum chemical calculations. Theoretical Chemistry Accounts. 2015;134:74. doi: 10.1007/s00214-015-1670-2. DOI

Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro, version 2010.1, a package of ab initio programs, http://www.molpro.net (2002).

Mayer I. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters. 1983;97:270–274. doi: 10.1016/0009-2614(83)80005-0. DOI

Mayer I. Bond order and valence indices: A personal account. Journal of Computational Chemistry. 2007;28:204–221. doi: 10.1002/jcc.20494. PubMed DOI

Mayer, I. Bond Orders and Energy Components: Extracting Chemical Information from Molecular Wave Functions (Taylor & Francis 2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer

. 2019 Apr 09 ; 15 (4) : 2206-2220. [epub] 20190313

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...