The correlation theory of the chemical bond
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28533506
PubMed Central
PMC5440380
DOI
10.1038/s41598-017-02447-z
PII: 10.1038/s41598-017-02447-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. These make it possible to characterise quantitatively, how well a bonding picture describes the chemical system. As proof of concept, we apply the theory for the investigation of the bond structures of several molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides a reason for debated bonding picture.
Zobrazit více v PubMed
Wilde, M. M. Quantum Information Theory (Cambridge University Press 2013).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 1 edn (Cambridge University Press, 2000).
Amico L, Fazio R, Osterloh A, Vedral V. Entanglement in many-body systems. Rev. Mod. Phys. 2008;80:517–576. doi: 10.1103/RevModPhys.80.517. DOI
Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev. Mod. Phys. 2009;81:865–942. doi: 10.1103/RevModPhys.81.865. DOI
Modi K, Paterek T, Son W, Vedral V, Williamson M. Unified view of quantum and classical correlations. Phys. Rev. Lett. 2010;104:080501. doi: 10.1103/PhysRevLett.104.080501. PubMed DOI
Legeza Ö, Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B. 2003;68:195116. doi: 10.1103/PhysRevB.68.195116. DOI
Legeza Ö, Sólyom J. Two-site entropy and quantum phase transitions in low-dimensional models. Phys. Rev. Lett. 2006;96:116401. doi: 10.1103/PhysRevLett.96.116401. PubMed DOI
Rissler J, Noack RM, White SR. Measuring orbital interaction using quantum information theory. Chemical Physics. 2006;323:519–531. doi: 10.1016/j.chemphys.2005.10.018. DOI
Pipek J, Nagy I. Measures of spatial entanglement in a two-electron model atom. Phys. Rev. A. 2009;79:052501. doi: 10.1103/PhysRevA.79.052501. DOI
Barcza G, Legeza Ö, Marti KH, Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A. 2011;83:012508. doi: 10.1103/PhysRevA.83.012508. DOI
McKemmish, L. K., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. The Journal of Chemical Physics135 (2011). PubMed
Boguslawski K, Tecmer P, Barcza G, Legeza Ö, Reiher M. Orbital entanglement in bond-formation processes. Journal of Chemical Theory and Computation. 2013;9:2959–2973. doi: 10.1021/ct400247p. PubMed DOI
Kurashige Y, Chan GK-L, Yanai T. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II. Nature Chemistry. 2013;5:660–666. doi: 10.1038/nchem.1677. PubMed DOI
Mottet M, Tecmer P, Boguslawski K, Legeza Ö, Reiher M. Quantum entanglement in carbon-carbon, carbon-phosphorus and silicon-silicon bonds. Phys. Chem. Chem. Phys. 2014;16:8872–8880. doi: 10.1039/c4cp00277f. PubMed DOI
Fertitta E, Paulus B, Barcza G, Legeza Ö. Investigation of metal-insulator-like transition through the ab initio density matrix renormalization group approach. Phys. Rev. B. 2014;90:245129. doi: 10.1103/PhysRevB.90.245129. DOI
Duperrouzel C, et al. A quantum informational approach for dissecting chemical reactions. Chemical Physics Letters. 2015;621:160–164. doi: 10.1016/j.cplett.2015.01.005. DOI
Boguslawski K, Tecmer P. Orbital entanglement in quantum chemistry. International Journal of Quantum Chemistry. 2015;115:1289–1295. doi: 10.1002/qua.24832. DOI
Freitag L, et al. Orbital entanglement and casscf analysis of the ru-no bond in a ruthenium nitrosyl complex. Phys. Chem. Chem. Phys. 2015;17:14383–14392. doi: 10.1039/C4CP05278A. PubMed DOI PMC
Szilvási, T., Barcza, G. & Legeza, Ö. Concept of chemical bond and aromaticity based on quantum information theory. arXiv [physics.chem-ph] 1509.04241 (2015).
Zhao Y, et al. Dissecting the bond-formation process of d10-metal–ethene complexes with multireference approaches. Theor. Chem. Acc. 2015;134:120. doi: 10.1007/s00214-015-1726-3. DOI
Lewis GN. The atom and the molecule. Journal of the American Chemical Society. 1916;38:762–785. doi: 10.1021/ja02261a002. DOI
Shaik, S. S. & Hiberty, P. C. A Chemist’s Guide to Valence Bond Theory (Wiley 2007).
Bader RFW, Stephens ME. Spatial localization of the electronic pair and number distributions in molecules. Journal of the American Chemical Society. 1975;97:7391–7399. doi: 10.1021/ja00859a001. DOI
Daudel, R. Introduction to the loge theory. In Chalvet, O., Daudel, R., Diner, S. & Malrieu, J. P. (eds) Localization and Delocalization in Quantum Chemistry: Volume I Atoms and Molecules in the Ground State, 3–8 (Springer Netherlands, Dordrecht 1975).
Fleming, I. Molecular Orbitals and Organic Chemical Reactions: Reference Edition (Wiley 2010).
Murg V, Verstraete F, Schneider R, Nagy PR, Legeza Ö. Tree tensor network state with variable tensor order: An efficient multireference method for strongly correlated systems. Journal of Chemical Theory and Computation. 2015;11:1027–1036. doi: 10.1021/ct501187j. PubMed DOI PMC
Szalay Sz. Multipartite entanglement measures. Phys. Rev. A. 2015;92:042329. doi: 10.1103/PhysRevA.92.042329. DOI
Barcza G, Noack RM, Sólyom J, Legeza Ö. Entanglement patterns and generalized correlation functions in quantum many-body systems. Phys. Rev. B. 2015;92:125140. doi: 10.1103/PhysRevB.92.125140. DOI
Shaik S, et al. Quadruple bonding in C2 and analogous eight-valence electron species. Nature Chemistry. 2012;4:195–200. doi: 10.1038/nchem.1263. PubMed DOI
Shaik S, Rzepa HS, Hoffmann R. One molecule, two atoms, three views, four bonds? Angewandte Chemie International Edition. 2013;52:3020–3033. doi: 10.1002/anie.201208206. PubMed DOI
Grunenberg J. Quantum chemistry: Quadruply bonded carbon. Nature Chemistry. 2012;4:154–155. doi: 10.1038/nchem.1274. PubMed DOI
Frenking G, Hermann M. Critical comments on “one molecule, two atoms, three views, four bonds”? Angewandte Chemie International Edition. 2013;52:5922–5925. doi: 10.1002/anie.201301485. PubMed DOI
Zhong R, Zhang M, Xu H, Su Z. Latent harmony in dicarbon between VB and MO theories through orthogonal hybridization of 3σg and 2σu. Chem. Sci. 2016;7:1028–1032. doi: 10.1039/C5SC03437J. PubMed DOI PMC
Pipek J, Mezey PG. A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions. The Journal of Chemical Physics. 1989;90:4916–4926. doi: 10.1063/1.456588. DOI
de Giambiagi MS, Giambiagi M, Jorge FE. Bond index: relation to second-order density matrix and charge fluctuations. Theoretica chimica acta. 1985;68:337–341. doi: 10.1007/BF00529054. DOI
Szalay Sz, et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015;115:1342–1391. doi: 10.1002/qua.24898. DOI
Ohya, M. & Petz, D. Quantum Entropy and Its Use, 1 edn (Springer Verlag 1993).
Araki H, Moriya H. Equilibrium statistical mechanics of fermion lattice systems. Reviews in Mathematical Physics. 2003;15:93–198. doi: 10.1142/S0129055X03001606. DOI
Szalay Sz, Kökényesi Z. Partial separability revisited: Necessary and sufficient criteria. Phys. Rev. A. 2012;86:032341. doi: 10.1103/PhysRevA.86.032341. DOI
Davey, B. A. & Priestley, H. A. Introduction to Lattices and Order, second edn (Cambridge University Press 2002).
Adesso G, Bromley TR, Cianciaruso M. Measures and applications of quantum correlations. Journal of Physics A: Mathematical and Theoretical. 2016;49:473001. doi: 10.1088/1751-8113/49/47/473001. DOI
Lindblad G. Entropy, information and quantum measurements. Communications in Mathematical Physics. 1973;33:305–322. doi: 10.1007/BF01646743. DOI
Horodecki R. Informationally coherent quantum systems. Physics Letters A. 1994;187:145–150. doi: 10.1016/0375-9601(94)90052-3. DOI
Legeza Ö, Sólyom J. Quantum data compression, quantum information generation, and the density-matrix renormalization-group method. Phys. Rev. B. 2004;70:205118. doi: 10.1103/PhysRevB.70.205118. DOI
Legeza Ö, Gebhard F, Rissler J. Entanglement production by independent quantum channels. Phys. Rev. B. 2006;74:195112. doi: 10.1103/PhysRevB.74.195112. DOI
Herbut F. On mutual information in multipartite quantum states and equality in strong subadditivity of entropy. Journal of Physics A: Mathematical and General. 2004;37:3535. doi: 10.1088/0305-4470/37/10/016. DOI
Koashi M, Winter A. Monogamy of quantum entanglement and other correlations. Phys. Rev. A. 2004;69:022309. doi: 10.1103/PhysRevA.69.022309. DOI
White SR, Martin RL. Ab initio quantum chemistry using the density matrix renormalization group. The Journal of Chemical Physics. 1999;110:4127–4130. doi: 10.1063/1.478295. DOI
White SR. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992;69:2863–2866. doi: 10.1103/PhysRevLett.69.2863. PubMed DOI
Marti KH, Reiher M. The density matrix renormalization group algorithm in quantum chemistry. Zeitschrift für Physikalische Chemie. 2010;224:583–599. doi: 10.1524/zpch.2010.6125. DOI
Zgid, D. & Nooijen, M. On the spin and symmetry adaptation of the density matrix renormalization group method. The Journal of Chemical Physics128 (2008). PubMed
Kurashige, Y. & Yanai, T. High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds. The Journal of Chemical Physics130 (2009). PubMed
Legeza, Ö., Rohwedder, T., Schneider, R. & Szalay, Sz. Tensor product approximation (DMRG) and coupled cluster method in quantum chemistry. In Bach, V. & Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, 53–76 (Springer International Publishing 2014).
Wouters, S. & Van Neck, D. The density matrix renormalization group for ab initio quantum chemistry. The European Physical Journal D68 (2014).
Chan GK-L, Kesselman A, Nakatani N, Li Z, White SR. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. The Journal of Chemical Physics. 2016;145:014102. doi: 10.1063/1.4955108. PubMed DOI
Olivares-Amaya, R. et al. The ab-initio density matrix renormalization group in practice. The Journal of Chemical Physics142 (2015). PubMed
Legeza Ö, Röder J, Hess BA. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B. 2003;67:125114. doi: 10.1103/PhysRevB.67.125114. DOI
Kállay, M. et al. MRCC, a quantum chemical program suite, version 2016-07-15 www.mrcc.hu. (2016).
Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. The Journal of Chemical Physics. 2013;139:094105. doi: 10.1063/1.4819401. PubMed DOI
Mester D, Csontos J, Kállay M. Unconventional bond functions for quantum chemical calculations. Theoretical Chemistry Accounts. 2015;134:74. doi: 10.1007/s00214-015-1670-2. DOI
Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro, version 2010.1, a package of ab initio programs, http://www.molpro.net (2002).
Mayer I. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters. 1983;97:270–274. doi: 10.1016/0009-2614(83)80005-0. DOI
Mayer I. Bond order and valence indices: A personal account. Journal of Computational Chemistry. 2007;28:204–221. doi: 10.1002/jcc.20494. PubMed DOI
Mayer, I. Bond Orders and Energy Components: Extracting Chemical Information from Molecular Wave Functions (Taylor & Francis 2016).
Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer