Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30802406
PubMed Central
PMC7002028
DOI
10.1021/acs.jctc.8b00960
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO-LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.
Department of Physics of Complex Systems Eötvös Loránd University Pf 32 H 1518 Budapest Hungary
Faculty of Mathematics and Physics Charles University 11636 Prague Czech Republic
Zobrazit více v PubMed
Veis L.; Antalík A.; Brabec J.; Neese F.; Legeza Ö.; Pittner J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072–4078. 10.1021/acs.jpclett.6b01908. PubMed DOI
Veis L.; Antalík A.; Legeza Ö.; Alavi A.; Pittner J. The Intricate Case of Tetramethyleneethane: A Full Configuration Interaction Quantum Monte Carlo Benchmark and Multireference Coupled Cluster Studies. J. Chem. Theory Comput. 2018, 14, 2439–2445. 10.1021/acs.jctc.8b00022. PubMed DOI
White S. R.; Martin R. L. Ab Initio Quantum Chemistry Using The Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI
McCulloch I. P.; Gulácsi M. The non-Abelian density matrix renormalization group algorithm. Europhys. Lett. 2002, 57, 852.10.1209/epl/i2002-00393-0. DOI
Tóth A.; Moca C.; Legeza Ö.; Zaránd G. Density matrix numerical renormalization group for non-Abelian symmetries. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 245109.10.1103/PhysRevB.78.245109. DOI
Sharma S.; Chan G. K.-L. Spin-adapted density matrix renormalization group algorithms for quantum chemistry. J. Chem. Phys. 2012, 136, 124121.10.1063/1.3695642. PubMed DOI
Keller S.; Reiher M. Spin-adapted matrix product states and operators. J. Chem. Phys. 2016, 144, 134101.10.1063/1.4944921. PubMed DOI
Bartlett R. J.; Musiał M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI
Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI
Köhn A.; Hanauer M.; Mück L. A.; Jagau T.-C.; Gauss J. State-specific multireference coupled-cluster theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 176–197. 10.1002/wcms.1120. DOI
Jeziorski B.; Monkhorst H. J. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668–1681. 10.1103/PhysRevA.24.1668. DOI
Lee J.; Small D. W.; Epifanovsky E.; Head-Gordon M. Coupled-cluster valence-bond singles and doubles for strongly correlated systems: Block-tensor based implementation and application to oligoacenes. J. Chem. Theory Comput. 2017, 13, 602–615. 10.1021/acs.jctc.6b01092. PubMed DOI
Lindgren I.; Mukherjee D. On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces. Phys. Rep. 1987, 151, 93–127. 10.1016/0370-1573(87)90073-1. DOI
Lindgren I. Linked-Diagram and Coupled-Cluster Expansions for Multi-Configurational, Complete and Incomplete Model Spaces. Phys. Scr. 1985, 32, 291.10.1088/0031-8949/32/4/009. DOI
Mukherjee D.; Moitra R. K.; Mukhopadhyay A. Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene. Mol. Phys. 1977, 33, 955–969. 10.1080/00268977700100871. DOI
Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method with optimized reference state. Int. J. Quantum Chem. 1984, 26, 267–291. 10.1002/qua.560260827. DOI
Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. I. General formalism. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 725–742. 10.1103/PhysRevA.32.725. PubMed DOI
Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 743.10.1103/PhysRevA.32.743. PubMed DOI
Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. III. On similarity transformation of operators in Fock space. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 37, 1908.10.1103/PhysRevA.37.1908. PubMed DOI
Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. IV. Calculation of expectation values and transition moments. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 37, 1926.10.1103/PhysRevA.37.1926. PubMed DOI
Stolarczyk L. Z.; Monkhorst H. J. Quasiparticle Fock-space coupled-cluster theory. Mol. Phys. 2010, 108, 3067–3089. 10.1080/00268976.2010.518981. DOI
Jeziorski B.; Monkhorst H. J. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.10.1103/PhysRevA.24.1668. DOI
Datta D.; Mukherjee D. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: Formal development and pilot applications. J. Chem. Phys. 2009, 131, 044124.10.1063/1.3185356. PubMed DOI
Evangelista F. A.; Allen W. D.; Schaefer H. F. III High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems. J. Chem. Phys. 2006, 125, 154113.10.1063/1.2357923. PubMed DOI
Piecuch P.; Paldus J. Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: Diagrammatic formulation. Theor. Chim. Acta 1992, 83, 69–103. 10.1007/BF01113244. DOI
Kucharski S.; Balková A.; Szalay P.; Bartlett R. J. Hilbert space multireference coupled-cluster methods. II. A model study on H8. J. Chem. Phys. 1992, 97, 4289–4300. 10.1063/1.463931. DOI
Balková A.; Kucharski S.; Meissner L.; Bartlett R. J. A Hilbert space multi-reference coupled-cluster study of the H 4 model system. Theor. Chim. Acta 1991, 80, 335–348. 10.1007/BF01117417. DOI
Kinoshita T.; Hino O.; Bartlett R. J. Coupled-cluster method tailored by configuration interaction. J. Chem. Phys. 2005, 123, 074106.10.1063/1.2000251. PubMed DOI
Fang T.; Shen J.; Li S. Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems. J. Chem. Phys. 2008, 128, 224107.10.1063/1.2939014. PubMed DOI
Datta D.; Kong L.; Nooijen M. A state-specific partially internally contracted multireference coupled cluster approach. J. Chem. Phys. 2011, 134, 214116.10.1063/1.3592494. PubMed DOI
Hanauer M.; Köhn A. Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J. Chem. Phys. 2011, 134, 204111.10.1063/1.3592786. PubMed DOI
Evangelista F. A.; Gauss J. An orbital-invariant internally contracted multireference coupled cluster approach. J. Chem. Phys. 2011, 134, 114102.10.1063/1.3559149. PubMed DOI
Lyakh D. I.; Ivanov V. V.; Adamowicz L. Automated generation of coupled-cluster diagrams: Implementation in the multireference state-specific coupled-cluster approach with the complete-active-space reference. J. Chem. Phys. 2005, 122, 024108.10.1063/1.1824897. PubMed DOI
Hanrath M. An exponential multireference wave-function Ansatz. J. Chem. Phys. 2005, 123, 084102.10.1063/1.1953407. PubMed DOI
Pittner J.; Nachtigall P.; Čársky P.; Hubač I. State-Specific Brillouin- Wigner Multireference Coupled Cluster Study of the Singlet- Triplet Separation in the Tetramethyleneethane Diradical. J. Phys. Chem. A 2001, 105, 1354–1356. 10.1021/jp0032199. DOI
Hubač I.; Wilson S. On the use of Brillouin-Wigner perturbation theory for many-body systems. J. Phys. B: At., Mol. Opt. Phys. 2000, 33, 365.10.1088/0953-4075/33/3/306. DOI
Hubač I.; Pittner J.; Čársky P. Size-extensivity correction for the state-specific multireference Brillouin-Wigner coupled-cluster theory. J. Chem. Phys. 2000, 112, 8779–8784. 10.1063/1.481493. DOI
Pittner J.; Šmydke J.; Čársky P.; Hubač I. State-specific Brillouin-Wigner multireference coupled cluster study of the F2 molecule: assessment of the a posteriori size-extensivity correction. J. Mol. Struct.: THEOCHEM 2001, 547, 239–244. 10.1016/S0166-1280(01)00473-0. DOI
Fang T.; Li S. Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking. J. Chem. Phys. 2007, 127, 204108.10.1063/1.2800027. PubMed DOI
Chattopadhyay S.; Mahapatra U. S.; Mukherjee D. Development of a linear response theory based on a state-specific multireference coupled cluster formalism. J. Chem. Phys. 2000, 112, 7939–7952. 10.1063/1.481395. DOI
Kong L. Connection between a few Jeziorski-Monkhorst ansatz-based methods. Int. J. Quantum Chem. 2009, 109, 441–447. 10.1002/qua.21822. DOI
Chattopadhyay S.; Mahapatra U. S.; Mukherjee D. Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories. J. Chem. Phys. 1999, 111, 3820–3831. 10.1063/1.479685. DOI
Pittner J. Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster. J. Chem. Phys. 2003, 118, 10876–10889. 10.1063/1.1574785. DOI
Mahapatra U. S.; Datta B.; Mukherjee D. A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications. J. Chem. Phys. 1999, 110, 6171–6188. 10.1063/1.478523. DOI
Mášik J.; Hubač I.; Mach P. Single-root multireference Brillouin-Wigner coupled-cluster theory: Applicability to the F 2 molecule. J. Chem. Phys. 1998, 108, 6571–6579. 10.1063/1.476071. DOI
Hubač I.; Neogrády P. Size-consistent Brillouin-Wigner perturbation theory with an exponentially parametrized wave function: Brillouin-Wigner coupled-cluster theory. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 4558–4564. 10.1103/PhysRevA.50.4558. PubMed DOI
Adamowicz L.; Malrieu J.-P.; Ivanov V. V. New approach to the state-specific multireference coupled-cluster formalism. J. Chem. Phys. 2000, 112, 10075–10084. 10.1063/1.481649. DOI
Kállay M.; Szalay P. G.; Surján P. R. A general state-selective multireference coupled-cluster algorithm. J. Chem. Phys. 2002, 117, 980–990. 10.1063/1.1483856. DOI
Piecuch P.; Kowalski K. The state-universal multi-reference coupled-cluster theory: An overview of some recent advances. Int. J. Mol. Sci. 2002, 3, 676–709. 10.3390/i3060676. DOI
Schucan T.; Weidenmüller H. The effective interaction in nuclei and its perturbation expansion: An algebraic approach. Ann. Phys. 1972, 73, 108–135. 10.1016/0003-4916(72)90315-6. DOI
Kaldor U. Intruder states and incomplete model spaces in multireference coupled-cluster theory: The 2p2 states of Be. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 6013.10.1103/PhysRevA.38.6013. PubMed DOI
Malrieu J.; Durand P.; Daudey J. Intermediate Hamiltonians as a new class of effective Hamiltonians. J. Phys. A: Math. Gen. 1985, 18, 809.10.1088/0305-4470/18/5/014. DOI
Jankowski K.; Malinowski P. A valence-universal coupled-cluster single-and double-excitations method for atoms. III. Solvability problems in the presence of intruder states. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1287.10.1088/0953-4075/27/7/004. DOI
Sharma S.; Alavi A. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. J. Chem. Phys. 2015, 143, 102815.10.1063/1.4928643. PubMed DOI
Henderson T. M.; Bulik I. W.; Stein T.; Scuseria G. E. Seniority-based coupled cluster theory. J. Chem. Phys. 2014, 141, 244104.10.1063/1.4904384. PubMed DOI
Lehtola S.; Parkhill J.; Head-Gordon M. Cost-effective description of strong correlation: Efficient implementations of the perfect quadruples and perfect hextuples models. J. Chem. Phys. 2016, 145, 134110.10.1063/1.4964317. PubMed DOI
Lehtola S.; Parkhill J.; Head-Gordon M. Orbital optimization in the perfect pairing hierarchy: applications to full-valence calculations on linear polyacenes. Mol. Phys. 2018, 116, 547–560. 10.1080/00268976.2017.1342009. DOI
Cullen J. Generalized valence bond solutions from a constrained coupled cluster method. Chem. Phys. 1996, 202, 217–229. 10.1016/0301-0104(95)00321-5. DOI
Goddard W. A. III; Harding L. B. The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 1978, 29, 363–396. 10.1146/annurev.pc.29.100178.002051. DOI
Ukrainskii I. New variational function in the theory of quasi-one-dimensional metals. Theor. Math. Phys. 1977, 32, 816–822. 10.1007/BF01089566. DOI
Hunt W.; Hay P.; Goddard W. III Self-Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2. J. Chem. Phys. 1972, 57, 738–748. 10.1063/1.1678308. DOI
Hurley A.; Lennard-Jones J. E.; Pople J. A. The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules. Proc. R. Soc. London. Series A. Math. Phys. Sci. 1953, 220, 446–455.
Živković T. P. Existence and reality of solutions of the coupled-cluster equations. Int. J. Quantum Chem. 1977, 12, 413–420. 10.1002/qua.560120849. DOI
Piecuch P.; Zarrabian S.; Paldus J.; Čížek J. Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 42, 3351.10.1103/PhysRevB.42.3351. PubMed DOI
Atkinson K. E.An introduction to numerical analysis; John Wiley & Sons, 2008.
Živković T. P.; Monkhorst H. J. Analytic connection between configuration-interaction and coupled-cluster solutions. J. Math. Phys. 1978, 19, 1007–1022. 10.1063/1.523761. DOI
Kowalski K.; Jankowski K. Towards complete solutions to systems of nonlinear equations of many-electron theories. Phys. Rev. Lett. 1998, 81, 1195.10.1103/PhysRevLett.81.1195. DOI
Piecuch P.; Kowalski K. In Computational Chemistry: Reviews of Current Trends; Leszczynski J., Ed.; World Scientific, Singapore, 2000; Vol. 5.
Jeziorski B.; Paldus J. Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function. J. Chem. Phys. 1989, 90, 2714–2731. 10.1063/1.455919. DOI
Schneider R. Analysis of the Projected Coupled Cluster Method in Electronic Structure Calculation. Numer. Math. 2009, 113, 433–471. 10.1007/s00211-009-0237-3. DOI
Rohwedder T. The Continuous Coupled Cluster Formulation for the Electronic Schrödinger Equation. ESAIM: Math. Modell. Numer. Anal. 2013, 47, 421–447. 10.1051/m2an/2012035. DOI
Rohwedder T.; Schneider R. Error Estimates for the Coupled Cluster Method. ESAIM: Math. Modell. Numer. Anal. 2013, 47, 1553–1582. 10.1051/m2an/2013075. DOI
Laestadius A.; Kvaal S. Analysis of the extended coupled-cluster method in quantum chemistry. SIAM J. on Numer. Anal. 2018, 56, 660–683. 10.1137/17M1116611. DOI
Löwdin P.-O. On the stability problem of a pair of adjoint operators. J. Math. Phys. 1983, 24, 70–87. 10.1063/1.525604. DOI
Arponen J. Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems. Ann. Phys. 1983, 151, 311–382. 10.1016/0003-4916(83)90284-1. DOI
Faulstich F. M.; Laestadius A.; Kvaal S.; Legeza Ö.; Schneider R. Analysis of The Coupled-Cluster Method Tailored by Tensor-Network States in Quantum Chemistry. arXiv.org 2018, 1802.05699.
Laestadius A.; Faulstich F. M. The coupled-cluster formalism-a mathematical perspective. Mol. Phys. 2019, 1–12. 10.1080/00268976.2018.1564848. DOI
Piecuch P.; Oliphant N.; Adamowicz L. A state-selective multireference coupled-cluster theory employing the single-reference formalism. J. Chem. Phys. 1993, 99, 1875–1900. 10.1063/1.466179. DOI
Piecuch P.; Adamowicz L. State-selective multireference coupled-cluster theory employing the single-reference formalism: Implementation and application to the H8 model system. J. Chem. Phys. 1994, 100, 5792–5809. 10.1063/1.467143. DOI
Chan G. K.-L.; Sharma S. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI
Saitow M.; Kurashige Y.; Yanai T. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys. 2013, 139, 044118.10.1063/1.4816627. PubMed DOI
Myhre R. H.; Koch H. The multilevel CC3 coupled cluster model. J. Chem. Phys. 2016, 145, 044111.10.1063/1.4959373. PubMed DOI
Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference nature of chemistry: The coupled-cluster view. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI
Szalay S.; Barcza G.; Szilvási T.; Veis L.; Legeza Ö. The correlation theory of the chemical bond. Sci. Rep. 2017, 7, 2237.10.1038/s41598-017-02447-z. PubMed DOI PMC
Legeza Ö.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI
Barcza G.; Legeza Ö.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A: At., Mol., Opt. Phys. 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI
Stein C. J.; Reiher M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 2016, 12, 1760–1771. 10.1021/acs.jctc.6b00156. PubMed DOI
Aubin J. P. Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1967, 21, 599–637.
Nitsche J. Ein kriterium für die quasi-optimalität des ritzschen verfahrens. Numer. Math. 1968, 11, 346–348. 10.1007/BF02166687. DOI
Oganesyan L. A.; Rukhovets L. A. Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. USSR Comput. Math. Math. Phys. 1969, 9, 158–183. 10.1016/0041-5553(69)90159-1. DOI
Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Kowalski K.; Piecuch P. Renormalized CCSD (T) and CCSD (TQ) approaches: Dissociation of the N2 triple bond. J. Chem. Phys. 2000, 113, 5644–5652. 10.1063/1.1290609. DOI
Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI
Murg V.; Verstraete F.; Legeza Ö.; Noack R.-h. M. Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 205105.10.1103/PhysRevB.82.205105. DOI
Nakatani N.; Chan G. K.-L. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm. J. Chem. Phys. 2013, 138, 134113.10.1063/1.4798639. PubMed DOI
Murg V.; Verstraete F.; Schneider R.; Nagy P. R.; Legeza Ö. Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems. J. Chem. Theory Comput. 2015, 11, 1027–1036. 10.1021/ct501187j. PubMed DOI PMC
Gunst K.; Verstraete F.; Wouters S.; Legeza Ö.; Van Neck D. T3NS: Three-Legged Tree Tensor Network States. J. Chem. Theory Comput. 2018, 14, 2026–2033. 10.1021/acs.jctc.8b00098. PubMed DOI
Chan G. K.-L.; Head-Gordon M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys. 2002, 116, 4462–4476. 10.1063/1.1449459. DOI
Legeza Ö.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI
Barcza G.; Legeza Ö.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A: At., Mol., Opt. Phys. 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI
Fertitta E.; Paulus B.; Barcza G.; Legeza Ö. Investigation of metal-insulator-like transition through the ab initio density matrix renormalization group approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 245129.10.1103/PhysRevB.90.245129. DOI
Rissler J.; Noack R. M.; White S. R. Measuring orbital interaction using quantum information theory. Chem. Phys. 2006, 323, 519–531. 10.1016/j.chemphys.2005.10.018. DOI
Legeza Ö.; Röder J.; Hess B. A. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI
Legeza Ö.; Sólyom J. Quantum data compression, quantum information generation, and the density-matrix renormalization-group method. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 205118.10.1103/PhysRevB.70.205118. DOI
Legeza Ö.; Fáth G. Accuracy of the density-matrix renormalization-group method. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 14349–14358. 10.1103/PhysRevB.53.14349. PubMed DOI
Legeza Ö., Veis L., Mosoni T.. QC-DMRG-Budapest, a program for quantum chemical DMRG calculations; HAS RISSPO: Budapest, 2018.
Chan G. K.-L.; Kállay M.; Gauss J. State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. J. Chem. Phys. 2004, 121, 6110–6116. 10.1063/1.1783212. PubMed DOI
Boguslawski K.; Tecmer P.; Barcza G.; Legeza Ö.; Reiher M. Orbital Entanglement in Bond-Formation Processes. J. Chem. Theory Comput. 2013, 9, 2959–2973. 10.1021/ct400247p. PubMed DOI
Valiev M.; Bylaska E.; Govind N.; Kowalski K.; Straatsma T.; Dam H. V.; Wang D.; Nieplocha J.; Apra E.; Windus T.; de Jong W. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI
Lee T. J.; Taylor P. R. A diagnostic for determining the quality of singlereference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. 10.1002/qua.560360824. DOI
Krumnow C.; Veis L.; Legeza Ö.; Eisert J. Fermionic orbital optimization in tensor network states. Phys. Rev. Lett. 2016, 117, 210402.10.1103/PhysRevLett.117.210402. PubMed DOI