Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer

. 2019 Apr 09 ; 15 (4) : 2206-2220. [epub] 20190313

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30802406

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO-LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

Zobrazit více v PubMed

Veis L.; Antalík A.; Brabec J.; Neese F.; Legeza Ö.; Pittner J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072–4078. 10.1021/acs.jpclett.6b01908. PubMed DOI

Veis L.; Antalík A.; Legeza Ö.; Alavi A.; Pittner J. The Intricate Case of Tetramethyleneethane: A Full Configuration Interaction Quantum Monte Carlo Benchmark and Multireference Coupled Cluster Studies. J. Chem. Theory Comput. 2018, 14, 2439–2445. 10.1021/acs.jctc.8b00022. PubMed DOI

White S. R.; Martin R. L. Ab Initio Quantum Chemistry Using The Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI

McCulloch I. P.; Gulácsi M. The non-Abelian density matrix renormalization group algorithm. Europhys. Lett. 2002, 57, 852.10.1209/epl/i2002-00393-0. DOI

Tóth A.; Moca C.; Legeza Ö.; Zaránd G. Density matrix numerical renormalization group for non-Abelian symmetries. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 245109.10.1103/PhysRevB.78.245109. DOI

Sharma S.; Chan G. K.-L. Spin-adapted density matrix renormalization group algorithms for quantum chemistry. J. Chem. Phys. 2012, 136, 124121.10.1063/1.3695642. PubMed DOI

Keller S.; Reiher M. Spin-adapted matrix product states and operators. J. Chem. Phys. 2016, 144, 134101.10.1063/1.4944921. PubMed DOI

Bartlett R. J.; Musiał M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI

Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI

Köhn A.; Hanauer M.; Mück L. A.; Jagau T.-C.; Gauss J. State-specific multireference coupled-cluster theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 176–197. 10.1002/wcms.1120. DOI

Jeziorski B.; Monkhorst H. J. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668–1681. 10.1103/PhysRevA.24.1668. DOI

Lee J.; Small D. W.; Epifanovsky E.; Head-Gordon M. Coupled-cluster valence-bond singles and doubles for strongly correlated systems: Block-tensor based implementation and application to oligoacenes. J. Chem. Theory Comput. 2017, 13, 602–615. 10.1021/acs.jctc.6b01092. PubMed DOI

Lindgren I.; Mukherjee D. On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces. Phys. Rep. 1987, 151, 93–127. 10.1016/0370-1573(87)90073-1. DOI

Lindgren I. Linked-Diagram and Coupled-Cluster Expansions for Multi-Configurational, Complete and Incomplete Model Spaces. Phys. Scr. 1985, 32, 291.10.1088/0031-8949/32/4/009. DOI

Mukherjee D.; Moitra R. K.; Mukhopadhyay A. Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene. Mol. Phys. 1977, 33, 955–969. 10.1080/00268977700100871. DOI

Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method with optimized reference state. Int. J. Quantum Chem. 1984, 26, 267–291. 10.1002/qua.560260827. DOI

Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. I. General formalism. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 725–742. 10.1103/PhysRevA.32.725. PubMed DOI

Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 743.10.1103/PhysRevA.32.743. PubMed DOI

Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. III. On similarity transformation of operators in Fock space. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 37, 1908.10.1103/PhysRevA.37.1908. PubMed DOI

Stolarczyk L. Z.; Monkhorst H. J. Coupled-cluster method in Fock space. IV. Calculation of expectation values and transition moments. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 37, 1926.10.1103/PhysRevA.37.1926. PubMed DOI

Stolarczyk L. Z.; Monkhorst H. J. Quasiparticle Fock-space coupled-cluster theory. Mol. Phys. 2010, 108, 3067–3089. 10.1080/00268976.2010.518981. DOI

Jeziorski B.; Monkhorst H. J. Coupled-cluster method for multideterminantal reference states. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.10.1103/PhysRevA.24.1668. DOI

Datta D.; Mukherjee D. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: Formal development and pilot applications. J. Chem. Phys. 2009, 131, 044124.10.1063/1.3185356. PubMed DOI

Evangelista F. A.; Allen W. D.; Schaefer H. F. III High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems. J. Chem. Phys. 2006, 125, 154113.10.1063/1.2357923. PubMed DOI

Piecuch P.; Paldus J. Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: Diagrammatic formulation. Theor. Chim. Acta 1992, 83, 69–103. 10.1007/BF01113244. DOI

Kucharski S.; Balková A.; Szalay P.; Bartlett R. J. Hilbert space multireference coupled-cluster methods. II. A model study on H8. J. Chem. Phys. 1992, 97, 4289–4300. 10.1063/1.463931. DOI

Balková A.; Kucharski S.; Meissner L.; Bartlett R. J. A Hilbert space multi-reference coupled-cluster study of the H 4 model system. Theor. Chim. Acta 1991, 80, 335–348. 10.1007/BF01117417. DOI

Kinoshita T.; Hino O.; Bartlett R. J. Coupled-cluster method tailored by configuration interaction. J. Chem. Phys. 2005, 123, 074106.10.1063/1.2000251. PubMed DOI

Fang T.; Shen J.; Li S. Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems. J. Chem. Phys. 2008, 128, 224107.10.1063/1.2939014. PubMed DOI

Datta D.; Kong L.; Nooijen M. A state-specific partially internally contracted multireference coupled cluster approach. J. Chem. Phys. 2011, 134, 214116.10.1063/1.3592494. PubMed DOI

Hanauer M.; Köhn A. Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J. Chem. Phys. 2011, 134, 204111.10.1063/1.3592786. PubMed DOI

Evangelista F. A.; Gauss J. An orbital-invariant internally contracted multireference coupled cluster approach. J. Chem. Phys. 2011, 134, 114102.10.1063/1.3559149. PubMed DOI

Lyakh D. I.; Ivanov V. V.; Adamowicz L. Automated generation of coupled-cluster diagrams: Implementation in the multireference state-specific coupled-cluster approach with the complete-active-space reference. J. Chem. Phys. 2005, 122, 024108.10.1063/1.1824897. PubMed DOI

Hanrath M. An exponential multireference wave-function Ansatz. J. Chem. Phys. 2005, 123, 084102.10.1063/1.1953407. PubMed DOI

Pittner J.; Nachtigall P.; Čársky P.; Hubač I. State-Specific Brillouin- Wigner Multireference Coupled Cluster Study of the Singlet- Triplet Separation in the Tetramethyleneethane Diradical. J. Phys. Chem. A 2001, 105, 1354–1356. 10.1021/jp0032199. DOI

Hubač I.; Wilson S. On the use of Brillouin-Wigner perturbation theory for many-body systems. J. Phys. B: At., Mol. Opt. Phys. 2000, 33, 365.10.1088/0953-4075/33/3/306. DOI

Hubač I.; Pittner J.; Čársky P. Size-extensivity correction for the state-specific multireference Brillouin-Wigner coupled-cluster theory. J. Chem. Phys. 2000, 112, 8779–8784. 10.1063/1.481493. DOI

Pittner J.; Šmydke J.; Čársky P.; Hubač I. State-specific Brillouin-Wigner multireference coupled cluster study of the F2 molecule: assessment of the a posteriori size-extensivity correction. J. Mol. Struct.: THEOCHEM 2001, 547, 239–244. 10.1016/S0166-1280(01)00473-0. DOI

Fang T.; Li S. Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking. J. Chem. Phys. 2007, 127, 204108.10.1063/1.2800027. PubMed DOI

Chattopadhyay S.; Mahapatra U. S.; Mukherjee D. Development of a linear response theory based on a state-specific multireference coupled cluster formalism. J. Chem. Phys. 2000, 112, 7939–7952. 10.1063/1.481395. DOI

Kong L. Connection between a few Jeziorski-Monkhorst ansatz-based methods. Int. J. Quantum Chem. 2009, 109, 441–447. 10.1002/qua.21822. DOI

Chattopadhyay S.; Mahapatra U. S.; Mukherjee D. Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories. J. Chem. Phys. 1999, 111, 3820–3831. 10.1063/1.479685. DOI

Pittner J. Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster. J. Chem. Phys. 2003, 118, 10876–10889. 10.1063/1.1574785. DOI

Mahapatra U. S.; Datta B.; Mukherjee D. A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications. J. Chem. Phys. 1999, 110, 6171–6188. 10.1063/1.478523. DOI

Mášik J.; Hubač I.; Mach P. Single-root multireference Brillouin-Wigner coupled-cluster theory: Applicability to the F 2 molecule. J. Chem. Phys. 1998, 108, 6571–6579. 10.1063/1.476071. DOI

Hubač I.; Neogrády P. Size-consistent Brillouin-Wigner perturbation theory with an exponentially parametrized wave function: Brillouin-Wigner coupled-cluster theory. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 4558–4564. 10.1103/PhysRevA.50.4558. PubMed DOI

Adamowicz L.; Malrieu J.-P.; Ivanov V. V. New approach to the state-specific multireference coupled-cluster formalism. J. Chem. Phys. 2000, 112, 10075–10084. 10.1063/1.481649. DOI

Kállay M.; Szalay P. G.; Surján P. R. A general state-selective multireference coupled-cluster algorithm. J. Chem. Phys. 2002, 117, 980–990. 10.1063/1.1483856. DOI

Piecuch P.; Kowalski K. The state-universal multi-reference coupled-cluster theory: An overview of some recent advances. Int. J. Mol. Sci. 2002, 3, 676–709. 10.3390/i3060676. DOI

Schucan T.; Weidenmüller H. The effective interaction in nuclei and its perturbation expansion: An algebraic approach. Ann. Phys. 1972, 73, 108–135. 10.1016/0003-4916(72)90315-6. DOI

Kaldor U. Intruder states and incomplete model spaces in multireference coupled-cluster theory: The 2p2 states of Be. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 6013.10.1103/PhysRevA.38.6013. PubMed DOI

Malrieu J.; Durand P.; Daudey J. Intermediate Hamiltonians as a new class of effective Hamiltonians. J. Phys. A: Math. Gen. 1985, 18, 809.10.1088/0305-4470/18/5/014. DOI

Jankowski K.; Malinowski P. A valence-universal coupled-cluster single-and double-excitations method for atoms. III. Solvability problems in the presence of intruder states. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1287.10.1088/0953-4075/27/7/004. DOI

Sharma S.; Alavi A. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. J. Chem. Phys. 2015, 143, 102815.10.1063/1.4928643. PubMed DOI

Henderson T. M.; Bulik I. W.; Stein T.; Scuseria G. E. Seniority-based coupled cluster theory. J. Chem. Phys. 2014, 141, 244104.10.1063/1.4904384. PubMed DOI

Lehtola S.; Parkhill J.; Head-Gordon M. Cost-effective description of strong correlation: Efficient implementations of the perfect quadruples and perfect hextuples models. J. Chem. Phys. 2016, 145, 134110.10.1063/1.4964317. PubMed DOI

Lehtola S.; Parkhill J.; Head-Gordon M. Orbital optimization in the perfect pairing hierarchy: applications to full-valence calculations on linear polyacenes. Mol. Phys. 2018, 116, 547–560. 10.1080/00268976.2017.1342009. DOI

Cullen J. Generalized valence bond solutions from a constrained coupled cluster method. Chem. Phys. 1996, 202, 217–229. 10.1016/0301-0104(95)00321-5. DOI

Goddard W. A. III; Harding L. B. The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 1978, 29, 363–396. 10.1146/annurev.pc.29.100178.002051. DOI

Ukrainskii I. New variational function in the theory of quasi-one-dimensional metals. Theor. Math. Phys. 1977, 32, 816–822. 10.1007/BF01089566. DOI

Hunt W.; Hay P.; Goddard W. III Self-Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2. J. Chem. Phys. 1972, 57, 738–748. 10.1063/1.1678308. DOI

Hurley A.; Lennard-Jones J. E.; Pople J. A. The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules. Proc. R. Soc. London. Series A. Math. Phys. Sci. 1953, 220, 446–455.

Živković T. P. Existence and reality of solutions of the coupled-cluster equations. Int. J. Quantum Chem. 1977, 12, 413–420. 10.1002/qua.560120849. DOI

Piecuch P.; Zarrabian S.; Paldus J.; Čížek J. Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 42, 3351.10.1103/PhysRevB.42.3351. PubMed DOI

Atkinson K. E.An introduction to numerical analysis; John Wiley & Sons, 2008.

Živković T. P.; Monkhorst H. J. Analytic connection between configuration-interaction and coupled-cluster solutions. J. Math. Phys. 1978, 19, 1007–1022. 10.1063/1.523761. DOI

Kowalski K.; Jankowski K. Towards complete solutions to systems of nonlinear equations of many-electron theories. Phys. Rev. Lett. 1998, 81, 1195.10.1103/PhysRevLett.81.1195. DOI

Piecuch P.; Kowalski K. In Computational Chemistry: Reviews of Current Trends; Leszczynski J., Ed.; World Scientific, Singapore, 2000; Vol. 5.

Jeziorski B.; Paldus J. Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function. J. Chem. Phys. 1989, 90, 2714–2731. 10.1063/1.455919. DOI

Schneider R. Analysis of the Projected Coupled Cluster Method in Electronic Structure Calculation. Numer. Math. 2009, 113, 433–471. 10.1007/s00211-009-0237-3. DOI

Rohwedder T. The Continuous Coupled Cluster Formulation for the Electronic Schrödinger Equation. ESAIM: Math. Modell. Numer. Anal. 2013, 47, 421–447. 10.1051/m2an/2012035. DOI

Rohwedder T.; Schneider R. Error Estimates for the Coupled Cluster Method. ESAIM: Math. Modell. Numer. Anal. 2013, 47, 1553–1582. 10.1051/m2an/2013075. DOI

Laestadius A.; Kvaal S. Analysis of the extended coupled-cluster method in quantum chemistry. SIAM J. on Numer. Anal. 2018, 56, 660–683. 10.1137/17M1116611. DOI

Löwdin P.-O. On the stability problem of a pair of adjoint operators. J. Math. Phys. 1983, 24, 70–87. 10.1063/1.525604. DOI

Arponen J. Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems. Ann. Phys. 1983, 151, 311–382. 10.1016/0003-4916(83)90284-1. DOI

Faulstich F. M.; Laestadius A.; Kvaal S.; Legeza Ö.; Schneider R. Analysis of The Coupled-Cluster Method Tailored by Tensor-Network States in Quantum Chemistry. arXiv.org 2018, 1802.05699.

Laestadius A.; Faulstich F. M. The coupled-cluster formalism-a mathematical perspective. Mol. Phys. 2019, 1–12. 10.1080/00268976.2018.1564848. DOI

Piecuch P.; Oliphant N.; Adamowicz L. A state-selective multireference coupled-cluster theory employing the single-reference formalism. J. Chem. Phys. 1993, 99, 1875–1900. 10.1063/1.466179. DOI

Piecuch P.; Adamowicz L. State-selective multireference coupled-cluster theory employing the single-reference formalism: Implementation and application to the H8 model system. J. Chem. Phys. 1994, 100, 5792–5809. 10.1063/1.467143. DOI

Chan G. K.-L.; Sharma S. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI

Saitow M.; Kurashige Y.; Yanai T. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys. 2013, 139, 044118.10.1063/1.4816627. PubMed DOI

Myhre R. H.; Koch H. The multilevel CC3 coupled cluster model. J. Chem. Phys. 2016, 145, 044111.10.1063/1.4959373. PubMed DOI

Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference nature of chemistry: The coupled-cluster view. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI

Szalay S.; Barcza G.; Szilvási T.; Veis L.; Legeza Ö. The correlation theory of the chemical bond. Sci. Rep. 2017, 7, 2237.10.1038/s41598-017-02447-z. PubMed DOI PMC

Legeza Ö.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI

Barcza G.; Legeza Ö.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A: At., Mol., Opt. Phys. 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI

Stein C. J.; Reiher M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 2016, 12, 1760–1771. 10.1021/acs.jctc.6b00156. PubMed DOI

Aubin J. P. Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1967, 21, 599–637.

Nitsche J. Ein kriterium für die quasi-optimalität des ritzschen verfahrens. Numer. Math. 1968, 11, 346–348. 10.1007/BF02166687. DOI

Oganesyan L. A.; Rukhovets L. A. Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. USSR Comput. Math. Math. Phys. 1969, 9, 158–183. 10.1016/0041-5553(69)90159-1. DOI

Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Kowalski K.; Piecuch P. Renormalized CCSD (T) and CCSD (TQ) approaches: Dissociation of the N2 triple bond. J. Chem. Phys. 2000, 113, 5644–5652. 10.1063/1.1290609. DOI

Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI

Murg V.; Verstraete F.; Legeza Ö.; Noack R.-h. M. Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 205105.10.1103/PhysRevB.82.205105. DOI

Nakatani N.; Chan G. K.-L. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm. J. Chem. Phys. 2013, 138, 134113.10.1063/1.4798639. PubMed DOI

Murg V.; Verstraete F.; Schneider R.; Nagy P. R.; Legeza Ö. Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems. J. Chem. Theory Comput. 2015, 11, 1027–1036. 10.1021/ct501187j. PubMed DOI PMC

Gunst K.; Verstraete F.; Wouters S.; Legeza Ö.; Van Neck D. T3NS: Three-Legged Tree Tensor Network States. J. Chem. Theory Comput. 2018, 14, 2026–2033. 10.1021/acs.jctc.8b00098. PubMed DOI

Chan G. K.-L.; Head-Gordon M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys. 2002, 116, 4462–4476. 10.1063/1.1449459. DOI

Legeza Ö.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI

Barcza G.; Legeza Ö.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A: At., Mol., Opt. Phys. 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI

Fertitta E.; Paulus B.; Barcza G.; Legeza Ö. Investigation of metal-insulator-like transition through the ab initio density matrix renormalization group approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 245129.10.1103/PhysRevB.90.245129. DOI

Rissler J.; Noack R. M.; White S. R. Measuring orbital interaction using quantum information theory. Chem. Phys. 2006, 323, 519–531. 10.1016/j.chemphys.2005.10.018. DOI

Legeza Ö.; Röder J.; Hess B. A. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI

Legeza Ö.; Sólyom J. Quantum data compression, quantum information generation, and the density-matrix renormalization-group method. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 205118.10.1103/PhysRevB.70.205118. DOI

Legeza Ö.; Fáth G. Accuracy of the density-matrix renormalization-group method. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 14349–14358. 10.1103/PhysRevB.53.14349. PubMed DOI

Legeza Ö., Veis L., Mosoni T.. QC-DMRG-Budapest, a program for quantum chemical DMRG calculations; HAS RISSPO: Budapest, 2018.

Chan G. K.-L.; Kállay M.; Gauss J. State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. J. Chem. Phys. 2004, 121, 6110–6116. 10.1063/1.1783212. PubMed DOI

Boguslawski K.; Tecmer P.; Barcza G.; Legeza Ö.; Reiher M. Orbital Entanglement in Bond-Formation Processes. J. Chem. Theory Comput. 2013, 9, 2959–2973. 10.1021/ct400247p. PubMed DOI

Valiev M.; Bylaska E.; Govind N.; Kowalski K.; Straatsma T.; Dam H. V.; Wang D.; Nieplocha J.; Apra E.; Windus T.; de Jong W. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. 10.1016/j.cpc.2010.04.018. DOI

Lee T. J.; Taylor P. R. A diagnostic for determining the quality of singlereference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. 10.1002/qua.560360824. DOI

Krumnow C.; Veis L.; Legeza Ö.; Eisert J. Fermionic orbital optimization in tensor network states. Phys. Rev. Lett. 2016, 117, 210402.10.1103/PhysRevLett.117.210402. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...