Lack of functional normalisation of tumour vessels following anti-angiogenic therapy in glioblastoma
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28627960
PubMed Central
PMC6168744
DOI
10.1177/0271678x17714656
Knihovny.cz E-zdroje
- Klíčová slova
- Angiogenesis, VEGF, bevacizumab, glioblastoma, hypoxia, perfusion,
- MeSH
- bevacizumab farmakologie MeSH
- glioblastom patologie MeSH
- inhibitory angiogeneze farmakologie MeSH
- lidé MeSH
- myši nahé MeSH
- nádory mozku patologie MeSH
- patologická angiogeneze patologie MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bevacizumab MeSH
- inhibitory angiogeneze MeSH
Neo-angiogenesis represents an important factor for the delivery of oxygen and nutrients to a growing tumour, and is considered to be one of the main pathodiagnostic features of glioblastomas (GBM). Anti-angiogenic therapy by vascular endothelial growth factor (VEGF) blocking agents has been shown to lead to morphological vascular normalisation resulting in a reduction of contrast enhancement as seen by magnetic resonance imaging (MRI). Yet the functional consequences of this normalisation and its potential for improved delivery of cytotoxic agents to the tumour are not known. The presented study aimed at determining the early physiologic changes following bevacizumab treatment. A time series of perfusion MRI and hypoxia positron emission tomography (PET) scans were acquired during the first week of treatment, in two human GBM xenograft models treated with either high or low doses of bevacizumab. We show that vascular morphology was normalised over the time period investigated, but vascular function was not improved, resulting in poor tumoural blood flow and increased hypoxia.
Bergen University College Bergen Norway
Department of Biomedecine University of Bergen Bergen Norway
Department of Clinical Science University of Bergen Bergen Norway
Department of Neurosurgery Haukeland University Hospital Bergen Norway
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
KG Jebsen Brain Tumor research Center University of Bergen Bergen Norway
Zobrazit více v PubMed
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109. PubMed PMC
Vredenburgh JJ, Desjardins A, Herndon JE, 2nd, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13: 1253–1259. PubMed
Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27: 740–745. PubMed PMC
Macdonald DR, Cascino TL, Schold SC, Jr, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8: 1277–1280. PubMed
Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27: 4733–4740. PubMed
Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370: 709–722. PubMed
Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370: 699–708. PubMed PMC
van den Bent MJ, Vogelbaum MA, Wen PY, et al. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s criteria. J Clin Oncol 2009; 27: 2905–2908. PubMed PMC
Reardon DA, Desjardins A, Peters KB, et al. Phase 2 study of carboplatin, irinotecan, and bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Cancer 2011; 117: 5351–5358. PubMed PMC
Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014; 15: 943–953. PubMed
Wick W. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro Oncol 2015; 17(suppl-5): v1.
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186. PubMed
Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987–989. PubMed
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10: 417–427. PubMed
Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6: 553–563. PubMed
Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731–3736. PubMed
McGee MC, Hamner JB, Williams RF, et al. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 76: 1537–1545. PubMed PMC
Claes A, Wesseling P, Jeuken J, et al. Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 2008; 7: 71–78. PubMed
Arjaans M, Oude Munnink TH, Oosting SF, et al. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res 2013; 73: 3347–3355. PubMed
Sorensen AG, Emblem KE, Polaskova P, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 2012; 72: 402–407. PubMed PMC
Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11: 83–95. PubMed PMC
Batchelor TT, Gerstner ER, Emblem KE, et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 2013; 110: 19059–19064. PubMed PMC
Keunen O, Johansson M, Oudin A, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 2011; 108: 3749–3754. PubMed PMC
Fack F, Espedal H, Keunen O, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 2015; 129: 115–131. PubMed PMC
Bjerkvig R, Tonnesen A, Laerum OD, et al. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 1990; 72: 463–475. PubMed
Wang J, Miletic H, Sakariassen PO, et al. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 2009; 9: 465. PubMed PMC
Stieber D, Golebiewska A, Evers L, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol 2014; 127: 203–219. PubMed PMC
Sakariassen PO, Prestegarden L, Wang J, et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci U S A 2006; 103: 16466–16471. PubMed PMC
Taxt T, Jirik R, Rygh CB, et al. Single-channel blind estimation of arterial input function and tissue impulse response in DCE-MRI. IEEE Trans Biomed Eng 2012; 59: 1012–1021. PubMed
Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol 2015; 121: 373–380. PubMed
Bougnaud S, Golebiewska A, Oudin A, et al. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 2016; 7: 31955–31971. PubMed PMC
O'Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015; 21: 249–257. PubMed PMC
Bonekamp D, Mouridsen K, Radbruch A, et al. Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma. J Cereb Blood Flow Metab 2016; 37(2): 485–494. PubMed PMC
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28: 1963–1972. PubMed
Sorensen AG, Batchelor TT, Wen PY, et al. Response criteria for glioma. Nat Clin Pract Oncol 2008; 5: 634–644. PubMed PMC
Schmainda KM, Zhang Z, Prah M, et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol 2015; 17: 1148–1156. PubMed PMC
Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009; 252: 182–189. PubMed
Ellingson BM, Cloughesy TF, Lai A, et al. Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2011; 13: 1151–1161. PubMed PMC
Chen L, Liu M, Bao J, et al. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One 2013; 8: e79008. PubMed PMC
Wong ET, Gautam S, Malchow C, et al. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw 2011; 9: 403–407. PubMed