Novel resistance to Cydia pomonella granulovirus (CpGV) in codling moth shows autosomal and dominant inheritance and confers cross-resistance to different CpGV genome groups
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28640892
PubMed Central
PMC5480857
DOI
10.1371/journal.pone.0179157
PII: PONE-D-16-50649
Knihovny.cz E-zdroje
- MeSH
- Betabaculovirus genetika fyziologie MeSH
- chromozomy hmyzu genetika MeSH
- genom virový genetika MeSH
- hybridizace genetická MeSH
- můry genetika fyziologie virologie MeSH
- typy dědičnosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Commercial Cydia pomonella granulovirus (CpGV) products have been successfully applied to control codling moth (CM) in organic and integrated fruit production for more than 30 years. Since 2005, resistance against the widely used isolate CpGV-M has been reported from different countries in Europe. The inheritance of this so-called type I resistance is dominant and linked to the Z chromosome. Recently, a second form (type II) of CpGV resistance in CM was reported from a field population (NRW-WE) in Germany. Type II resistance confers reduced susceptibility not only to CpGV-M but to most known CpGV isolates and it does not follow the previously described Z-linked inheritance of type I resistance. To further analyze type II resistance, two CM strains, termed CpR5M and CpR5S, were generated from parental NRW-WE by repeated mass crosses and selection using the two isolates CpGV-M and CpGV-S, respectively. Both CpR5M and CpR5S were considered to be genetically homogeneous for the presence of the resistance allele(s). By crossing and backcrossing experiments with a susceptible CM strain, followed by resistance testing of the offspring, an autosomal dominant inheritance of resistance was elucidated. In addition, cross-resistance to CpGV-M and CpGV-S was detected in both strains, CpR5M and CpR5S. To test the hypothesis that the autosomal inheritance of type II resistance was caused by a large interchromosomal rearrangement involving the Z chromosome, making type I resistance appear to be autosomal in these strains; fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC-FISH) was used to physically map the Z chromosomes of different CM strains. Conserved synteny of the Z-linked genes in CpR5M and other CM strains rejects this hypothesis and argues for a novel genetic and functional mode of resistance in CM populations with type II resistance.
Max Planck Institute for Chemical Ecology Department of Entomology Jena Germany
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Herniou EA, Luque T, Chen X, Vlak JM, Winstanley D, Cory JS, et al. Use of whole genome sequence data to infer baculovirus phylogeny. J Virol. 2001;75(17):8117–26. doi: 10.1128/JVI.75.17.8117-8126.2001 WOS:000170343900036. PubMed DOI PMC
Luque T, Finch R, Crook N, O'Reilly DR, Winstanley D. The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol. 2001;82:2531–47. WOS:000171230200023. doi: 10.1099/0022-1317-82-10-2531 PubMed DOI
Lacey LA, Thomson D, Vincent C, Arthurs SP. Codling moth granulovirus: a comprehensive review. Biocontrol Sci Technol. 2008;18(7):639–63. doi: 10.1080/09583150802267046 WOS:000259621200001. DOI
Tanada Y. A granulosis virus of codling moth, Carpocapsa pomonella (Linnaeus) (Olethreutidae, Lepidoptera). J Insect Pathol. 1964;6(3):378–80. WOS:A19645457B00011.
Fritsch E, Undorf-Spahn K, Kienzle J, Zebitz CPW, Huber J. Apfelwickler-Granulovirus: Erste Hinweise auf Unterschiede in der Empfindlichkeit lokaler Apfelwickler-Populationen. Nachrichtenblatt Deutscher Pflanzenschutzbund. 2005;57(2):29–34. Epub 2005.
Sauphanor B, Berling M, Toubon J-F, Reyes M, Delnatte J. Carpocapse des pommes cas de résistance aux virus de la granulose dans le Sud-Est [Codling moth: Cases of resistance to granuloviruses in organic orchards]. Phytoma—La Défense des Végétaux. 2006;590:24–7.
Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE, Gund NA, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007; 317(5846):1916–8. doi: 10.1126/science.1146542 WOS:000249764300038. PubMed DOI
Schmitt A, Bisutti IL, Ladurner E, Benuzzi M, Sauphanor B, Kienzle J, et al. The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. J Appl Entomol. 2013;137(9): 641–9. doi: 10.1111/jen.12046 WOS:000326034000001. DOI
Zichová T, Stará J, Kundu JK, Eberle KE, Jehle JA. Resistance to Cydia pomonella granulovirus follows a geographically widely distributed inheritance type within Europe. Biocontrol. 2013;58(4):525–34. doi: 10.1007/s10526-013-9507-1 WOS:000323908400007. DOI
Berling M, Blachere-Lopez C, Soubabere O, Lery X, Bonhomme A, Sauphanor B, et al. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol. 2009;75(4):925–30. doi: 10.1128/AEM.01998-08 WOS:000263119100005. PubMed DOI PMC
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48(6):1083–92. doi: 10.1139/g05-063 WOS:000234473000016. PubMed DOI
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1(6):332–46. doi: 10.1159/000111765 WOS:000253615600002. PubMed DOI
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci USA. 2013;110(17):6931–6. doi: 10.1073/pnas.1220372110 WOS:000318677300072. PubMed DOI PMC
Asser-Kaiser S, Radtke P, El-Salamouny S, Winstanley D, Jehle JA. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology. 2010;410(2):360–7. doi: 10.1016/j.virol.2010.11.021 WOS:000287180400010. PubMed DOI
Berling M, Sauphanor B, Bonhomme A, Siegwart M, Lopez-Ferber M. A single sex-linked dominant gene does not fully explain the codling moth's resistance to granulovirus. Pest Manag Sci. 2013;69(11):1261–6. doi: 10.1002/ps.3493 WOS:000325357800009. PubMed DOI
Jehle JA, Sayed S, Wahl-Ermel B. What do we (need to) know about low-susceptibility of codling moth against Cydia pomonella granulovirus (CpGV). In: Fördergemeinschaft Ökologischer Obstbau e V, editor. Ecofruit 2006. Weinsberg, Germany: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO); 2006. 14–8 p.
Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA. Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol. 2008;98(3):293–8. doi: 10.1016/j.jip.2008.03.003 WOS:000257486900011. PubMed DOI
Graillot B, Berling M, Blachere-Lopez C, Siegwart M, Besse S, Lopez-Ferber M. Progressive adaptation of a CpGV isolate to codling moth populations resistant to CpGV-M. Viruses. 2014;6(12):5135–44. doi: 10.3390/v6125135 WOS:000346834500016. PubMed DOI PMC
Eberle KE, Sayed S, Rezapanah M, Shojai-Estabragh S, Jehle JA. Diversity and evolution of the Cydia pomonella granulovirus. J Gen Virol. 2009;90:662–71. doi: 10.1099/vir.0.006999-0 WOS:000263921800016. PubMed DOI
Gebhardt MM, Eberle KE, Radtke P, Jehle JA. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38. Proc Natl Acad Sci USA. 2014;111(44):15711–6. doi: 10.1073/pnas.1411089111 WOS:000344088100035. PubMed DOI PMC
Krappa R, Knebel-Morsdorf D. Identification of the very early transcribed baculovirus gene PE-38. J Virol. 1991;65(2):805–12. WOS:A1991ET44500029. PubMed PMC
Kienzle J, Zimmer J, Volk F, Zebitz CPW. Field tests with Madex Plus against CpGV-resistant codling moth populations in organic orchards in 2006. In: Fördergemeinschaft Ökologischer Obstbau e V, editor. Ecofruit 2008. Weinsberg, Germany: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO); 2008. 261–4 p.
Jehle JA, Sauer A, Fritsch E, Undorf-Spahn K. Resistance to Cydia pomonella granulovirus: novel findings on its distribution and diversity. In: Fördergemeinschaft Ökologischer Obstbau e V, editor. Ecofruit2014. Weinsberg, Germany: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO); 2014. 244–6 p.
Jehle JA, Schulze-Bopp S, Undorf-Spahn K, Fritsch E. Evidence for a second type of resistance against Cydia pomonella granulovirus (CpGV) in codling moth field populations. Appl Environ Microbiol. 2017;83:e02330–16. PubMed PMC
Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1987;3(2):302–3. WOS:A1987H788900028. PubMed
Bourguet D, Genissel A, Raymond M. Insecticide resistance and dominance levels. J Econ Entomol. 2000;93(6):1588–95. WOS:000166049400004. PubMed
Tabashnik BE. Determining the mode of inheritance of pesticide resistance with backcrossing experiments. J of Econ Entomol. 1991;84(3):703–12. WOS:A1991FT23400001. PubMed
Fritsch E, Undorf-Spahn K, Kienzle J, Zebitz CPW, Huber J. Codling moth granulovirus: variations in the susceptibility of local codling moth populations. In: Fördergemeinschaft Ökologischer Obstbau e V, editor. Ecofruit 2006. Weinsberg, Germany: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO); 2006. 7–13 p.
Eberle KE, Jehle JA. Field resistance of codling moth against Cydia pomonella granulovirus (CpGV) is autosomal and incompletely dominant inherited. J Invertebr Pathol. 2006;93(3):201–6. doi: 10.1016/j.jip.2006.07.001 WOS:000241931100008. PubMed DOI
Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005;170(2):675–85. doi: 10.1534/genetics.104.040352 WOS:000230441900017. PubMed DOI PMC
d'Alencon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA. 2010;107(17):7680–5. doi: 10.1073/pnas.0910413107 WOS:000277088700017. PubMed DOI PMC
Van't Hof AE, Nguyen P, Dalikova M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013;110(3):283–95. doi: 10.1038/hdy.2012.84 WOS:000315017900012. PubMed DOI PMC
Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Comm. 2014;5:4737 doi: 10.1038/ncomms5737 WOS:000342840900001. PubMed DOI PMC
Ivaldi-Sender C. Techniques simples our un élévage permanent de la tordeuse orientale, Grapholita molesta (Lepidoptera Tortricidae) sur milieu artificiel. Annales de Zoologie, Ecologie Animale. 1974;6(2):337–43. CABI:19750526153.
Smith IRL, Crook NE. In vivo isolation of baculovirus genotypes. Virology. 1988;166(1):240–4. doi: 10.1016/0042-6822(88)90165-1 WOS:A1988Q078000027. PubMed DOI
Undorf-Spahn K, Fritsch E, Huber J, Kienzle J, Zebitz CPW, Jehle JA. High stability and no fitness costs of the resistance of codling moth to Cydia pomonella granulovirus (CpGV-M). J Invertebr Pathol. 2012;111(2):136–42. doi: 10.1016/j.jip.2012.07.005 WOS:000308898300006. PubMed DOI
Wolf KW. The structure of condensed chromosomes in mitosis and meiosis of insects. International J Insect Morphol Embryol. 1996;25(1–2):37–62. doi: 10.1016/0020-7322(95)00021-6 WOS:A1996UQ70200006. DOI
Carpenter JE, Bloem S, Marec F. Inherited sterility in insects In: Dyck VA Hendrichs J, Robinson AS, editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer; 2005:115–46.