Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors

. 2017 ; 12 (6) : e0179645. [epub] 20170623

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28644855

Grantová podpora
001 World Health Organization - International

MicroRNAs are considered as promising prognostic and diagnostic biomarkers of human cancer since their profiles differ between tumor types. Most of the tumor profiling studies were performed on rarely available fresh frozen (FF) samples. Alternatively, archived formalin-fixed paraffin-embedded (FFPE) tissue samples are also well applicable to larger-scale retrospective miRNA profiling studies. The aim of this study was to perform systematic comparison of the miRNA expression profiles between FF and macrodissected FFPE tonsillar tumors using the TaqMan Low Density Array system, with the data processed by different software programs and two types of normalization methods. We observed a marked correlation between the miRNA expression profiles of paired FF and FFPE samples; however, only 27-38% of the differentially deregulated miRNAs overlapped between the two source systems. The comparison of the results with regard to the distinct modes of data normalization revealed an overlap in 58-67% of differentially expressed miRNAs, with no influence of the choice of software platform. Our study highlights the fact that for an accurate comparison of the miRNA expression profiles from published studies, it is important to use the same type of clinical material and to test and select the best-performing normalization method for data analysis.

Zobrazit více v PubMed

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116: 281–297. PubMed

Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30: 460–471. doi: 10.1016/j.molcel.2008.05.001 PubMed DOI

Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318: 1931–1934. doi: 10.1126/science.1149460 PubMed DOI

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103: 2257–2261. doi: 10.1073/pnas.0510565103 PubMed DOI PMC

Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26: 293–300. doi: 10.1089/dna.2006.0554 PubMed DOI

Gao G, Gay HA, Chernock RD, Zhang TR, Luo J, Thorstad WL, et al. A microRNA expression signature for the prognosis of oropharyngeal squamous cell carcinoma. Cancer. 2013; 119: 72–80. doi: 10.1002/cncr.27696 PubMed DOI PMC

Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, et al. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci USA. 2014;111: 4262–4267. doi: 10.1073/pnas.1401430111 PubMed DOI PMC

Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2008;10: 203–211. doi: 10.2353/jmoldx.2008.070153 PubMed DOI PMC

Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 2007;13: 1668–1674. doi: 10.1261/rna.642907 PubMed DOI PMC

Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, Jung K. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56: 998–1006. doi: 10.1373/clinchem.2009.141580 PubMed DOI

Vojtechova Z, Sabol I, Salakova M, Smahelova J, Zavadil J, Turek L, et al. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer. 2016;16: 382 doi: 10.1186/s12885-016-2430-y PubMed DOI PMC

Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T. et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009;9: 597–606. PubMed

Goswami RS, Waldron L, Machado J, Cervigne NK, Xu W, Reis PP, et al. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol. 2010;10: 47 doi: 10.1186/1472-6750-10-47 PubMed DOI PMC

Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, Quintanar-Jurado V, Maffuz-Aziz A, Jimenez-Sanchez G, et al. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One. 2012;7: e31904 doi: 10.1371/journal.pone.0031904 PubMed DOI PMC

Vojtechova Z, Sabol I, Salakova M, Turek L, Grega M, Smahelova J, et al. Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients' prognosis. Int J Cancer. 2016;138: 386–395. doi: 10.1002/ijc.29712 PubMed DOI

Osawa S, Shimada Y, Sekine S, Okumura T, Nagata T, Fukuoka J, et al. MicroRNA profiling of gastric cancer patients from formalin-fixed paraffin-embedded samples. Onco. Lett. 2011;2: 613–619. PubMed PMC

Lee TS, Jeon HW, Kim YB, Kim YA, Kim MA, Kang SB, et al. Aberrant microRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS One. 2013;8: e81421 doi: 10.1371/journal.pone.0081421 PubMed DOI PMC

Ganci F, Sacconi A, Manciocco V, Sperduti I, Battaglia P, Covello R, et al. MicroRNA expression profiling of thymic epithelial tumors. Lung Cancer. 2014; 5: 197–204. PubMed

Leichter AL, Purcell RV, Sullivan MJ, Eccles MR, Chatterjee A. Multi-platform microRNA profiling of hepatoblastoma patients using formalin fixed paraffin embedded archival samples. Gigascience. 2015;4: 54 doi: 10.1186/s13742-015-0099-9 PubMed DOI PMC

Chatterjee A, Leichter AL, Fan V, Tsai P, Purcell RV, Sullivan MJ, et al. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci Rep. 2015; 5: 10438 doi: 10.1038/srep10438 PubMed DOI PMC

Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 2007;7: 36 doi: 10.1186/1472-6750-7-36 PubMed DOI PMC

Hoefig KP, Thorns C, Roehle A, Kaehler C, Wesche KO, Repsilber D, et al. Unlocking pathology archives for microRNA-profiling. Anticancer Res. 2008;28: 119–123. PubMed

Mortarino M, Gioia G, Gelain ME, Albonico F, Roccabianca P, Ferri E, et al. Identification of suitable endogenous controls and differentially expressed microRNAs in canine fresh-frozen and FFPE lymphoma samples. Leuk Res.2010;34: 1070–1077. doi: 10.1016/j.leukres.2009.10.023 PubMed DOI

Leite KR, Canavez JM, Reis ST, Tomiyama AH, Piantino CB, Sañudo A, et al. miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol Oncol. 2011;29: 533–537. doi: 10.1016/j.urolonc.2009.05.008 PubMed DOI

de Biase D, Visani M, Morandi L, Marucci G, Taccioli C, Cerasoli S, et al. miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR. PLoS One. 2012;7: e35596 doi: 10.1371/journal.pone.0035596 PubMed DOI PMC

Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H, et al. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn. 2008;10: 513–519. doi: 10.2353/jmoldx.2008.080077 PubMed DOI PMC

Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC, et al. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J Invest Dermatol. 2009;129: 1219–1224. doi: 10.1038/jid.2008.347 PubMed DOI

Meng W, McElroy JP, Volinia S, Palatini J, Warner S, Ayers LW, et al. Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS One. 2013;8: e64393 doi: 10.1371/journal.pone.0064393 PubMed DOI PMC

Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, et al. Hsa-Mir-210 is a Marker of Tumor Hypoxia and a Prognostic Factor in Head and Neck Cancer. Cancer. 2010;116: 2148–2158. doi: 10.1002/cncr.25009 PubMed DOI

Gao Y, Feng B, Han S, Zhang K, Chen J, Li C, et al. The Roles of MicroRNA-141 in Human Cancers: From Diagnosis to Treatment. Cell Physiol Biochem. 2016;38: 427–448. doi: 10.1159/000438641 PubMed DOI

Mao Y, Wu S, Zhao R, Deng Q. MiR-205 promotes proliferation, migration and invasion of nasopharyngeal carcinoma cells by activation of AKT signalling. J Int Med Res. 2016;44: 231–240. doi: 10.1177/0300060515576556 PubMed DOI PMC

Zeng F, Xue M, Xiao T, Li Y, Xiao S, Jiang B, et al. MiR-200b promotes the cell proliferation and metastasis of cervical cancer by inhibiting FOXG1. Biomed Pharmacother. 2016;79: 294–301. doi: 10.1016/j.biopha.2016.02.033 PubMed DOI

Venkatesh T, Nagashri MN, Swamy SS, Mohiyuddin SM, Gopinath KS, Kumar A. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma. Plos One 2013;8: e54643 doi: 10.1371/journal.pone.0054643 PubMed DOI PMC

Zhang Y, Song H, Zhang Y, Wu F, Mu Q, Jiang M, et al. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126‐5p. J Am Heart Assoc. 2016;5. PubMed PMC

Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014;20: 368–76. doi: 10.1038/nm.3487 PubMed DOI PMC

Salem O, Erdem N, Jung J, Münstermann E, Wörner A, Wilhelm H, et al. The highly expressed 5’isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics 2016;17: 566 doi: 10.1186/s12864-016-2869-x PubMed DOI PMC

Kong XM, Zhang GH, Huo YK, Zhao XH, Cao DW, Guo SF, et al. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2. Int J Clin Exp Pathol 2015;8: 12845–52. PubMed PMC

Zou MX, Huang W, Wang XB, Lv GH, Li J, Deng YW. Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma. Int J Clin Exp Pathol 2014;7: 4877–85. PubMed PMC

Al-Khalaf HH and Aboussekhra A. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding Protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT. J Biol Chem 2014;289: 31433–31447. doi: 10.1074/jbc.M114.593004 PubMed DOI PMC

Das AV and Pillai RM. Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis. Cancer Cell Int 2015;15: 92 doi: 10.1186/s12935-015-0247-4 PubMed DOI PMC

Chen Y, Ma C, Zhang W, Chen Z, Ma L. Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer. Diagn Pathol 2014;9: 88 doi: 10.1186/1746-1596-9-88 PubMed DOI PMC

Bufalino A, Cervigne NK, de Oliveira CE, Fonseca FP, Rodrigues PC, Macedo CC, et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis. Plos One 2015;10: e0136599 doi: 10.1371/journal.pone.0136599 PubMed DOI PMC

Lu YC, Chang JT, Liao CT, Kang CJ, Huang SF, Chen IH, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer 2014;13: 218 doi: 10.1186/1476-4598-13-218 PubMed DOI PMC

Hou YY, You JJ, Yang CM, Pan HW, Chen HC, Lee JH, et al. Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer. Oncol Lett 2016;11: 4013–4021. doi: 10.3892/ol.2016.4491 PubMed DOI PMC

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SP1. Nat Cell Biol 2008;10: 593–601. doi: 10.1038/ncb1722 PubMed DOI

Zhang KC, Xi HQ, Cui JX, Shen WS, Li JY, Wei B, et al. Prognostic role of miR-200c in various malignancies: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8: 1931–43. PubMed PMC

Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res 2014;33: 50 doi: 10.1186/1756-9966-33-50 PubMed DOI PMC

Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T, Fujimura L, et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol 2013;43: 1855–63. doi: 10.3892/ijo.2013.2145 PubMed DOI PMC

Kinoshita T, Nohata N, Hanazawa T, Kikkawa N, Yamamoto N, Yoshino H, et al. Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin–integrin signalling in head and neck squamous cell carcinoma. Br J Cancer 2013;109: 2636–45. doi: 10.1038/bjc.2013.607 PubMed DOI PMC

Hui AB, Lin A, Xu W, Waldron L, Perez-Ordonez B, Weinreb I, et al. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clin Cancer Res. 2013;19: 2154–2162. doi: 10.1158/1078-0432.CCR-12-3572 PubMed DOI

Lu ZM, Lin YF, Jiang L, Chen LS, Luo XN, Song XH, et al. Micro-ribonucleic acid expression profiling and bioinformatic target gene analyses in laryngeal carcinoma. Onco Targets Ther. 2014;7: 525–533. doi: 10.2147/OTT.S59871 PubMed DOI PMC

Miller DL, Davis JW, Taylor KH, Johnson J, Shi Z, Williams R, et al. Identification of a human papillomavirus-associated oncogenic miRNA panel in human oropharyngeal squamous cell carcinoma validated by bioinformatics analysis of the Cancer Genome Atlas. Am J Pathol. 2015;185: 679–692. doi: 10.1016/j.ajpath.2014.11.018 PubMed DOI PMC

Liu W, Gao G, Hu X, Wang Y, Schwarz JK, Chen JJ, et al. Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget. 2014;5: 11620–11630. doi: 10.18632/oncotarget.2599 PubMed DOI PMC

Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, et al. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol. 2012;29: 1037–1043. doi: 10.1007/s12032-011-9975-z PubMed DOI

Siow MY, Ng LP, Vincent-Chong VK, Jamaludin M, Abraham MT, Abdul Rahman ZA, et al. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis. 2014;20: 345–351. doi: 10.1111/odi.12118 PubMed DOI

He S, Lai R, Chen D, Yan W, Zhang Z, Liu Z, et al. Downregulation of miR-221 Inhibits Cell Migration and Invasion through Targeting Methyl-CpG Binding Domain Protein 2 in Human Oral Squamous Cell Carcinoma Cells. Biomed Res Int. 2015; 751672 doi: 10.1155/2015/751672 PubMed DOI PMC

Wang L, Liu C, Li C, Xue J, Zhao S, Zhan P, et al. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene. 2015;572: 252–258. doi: 10.1016/j.gene.2015.07.017 PubMed DOI

Zhu J, Liu F, Wu Q, Liu X. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN. Int J Mol Med. 2015;36: 1377–1383. doi: 10.3892/ijmm.2015.2352 PubMed DOI

Ko YH, Won HS, Sun DS, An HJ, Jeon EK, Kim MS, et al. Human papillomavirus-stratified analysis of the prognostic role of miR-21 in oral cavity and oropharyngeal squamous cell carcinoma. Pathol Int. 2014;64: 499–507. doi: 10.1111/pin.12201 PubMed DOI

Sun SS, Zhou X, Huang YY, Kong LP, Mei M, Guo WY, et al. Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol Cancer. 2015;14: 213 doi: 10.1186/s12943-015-0487-x PubMed DOI PMC

Kumar B, Yadav A, Lang J, Teknos TN, Kumar P. Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One. 2012;7: e37601 doi: 10.1371/journal.pone.0037601 PubMed DOI PMC

Jia LF, Wei SB, Mitchelson K, Gao Y, Zheng YF, Meng Z, et al. miR-34a inhibits migration and invasion of tongue squamous cell carcinoma via targeting MMP9 and MMP14. PLoS One. 2014;9: e108435 doi: 10.1371/journal.pone.0108435 PubMed DOI PMC

Renjie W and Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett. 2015;356: 568–578. doi: 10.1016/j.canlet.2014.10.003 PubMed DOI

Li H, Xu Y, Qiu W, Zhao D, Zhang Y. Tissue miR-193b as a Novel Biomarker for Patients with Ovarian Cancer. Med Sci Monit. 2015;21: 3929–3934. doi: 10.12659/MSM.895407 PubMed DOI PMC

Sasahira T, Kurihara M, Bhawal UK, Ueda N, Shimomoto T, Yamamoto K, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer. 2012;107: 700–706. doi: 10.1038/bjc.2012.330 PubMed DOI PMC

Lerner C, Wemmert S, Bochen F, Kulas P, Linxweiler M, Hasenfus A, et al. Characterization of miR-146a and miR-155 in blood, tissue and cell lines of head and neck squamous cell carcinoma patients and their impact on cell proliferation and migration. J Cancer Res Clin Oncol. 2016;142: 757–766. doi: 10.1007/s00432-015-2087-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace