Daphnia magna demonstrated sufficient sensitivity in techno-economic optimization of lignocellulose bioethanol production
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Case Reports, Journal Article
PubMed
28660451
PubMed Central
PMC5489449
DOI
10.1007/s13205-017-0839-x
PII: 10.1007/s13205-017-0839-x
Knihovny.cz E-resources
- Keywords
- Bioethanol, Financial analysis, Process management, Techno-economical assessment, Valuation,
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Notable progress has been achieved in the past two decades regarding production of different enzymatic mixtures for hydrolysis of the lignocellulose matrix. Nevertheless, the hydrolysing mixtures remain slow and require tempering, which results in high-energy demands and bad financial results. Use of acids or alkali at a very high temperature and pressure accelerates the process more than ten times wherein the energy requirements are approximately equal. However, these elevated reaction conditions might cause the breakdown of complex lignin formula into substances that have the potential to inhibit subsequent fermentation processes. Formation of these breakdown products may be prevented by selecting the optimum process parameters, but their acquisition requires either a large number of expensive analytical techniques or equally large amounts of slow fermentation tests. An inexpensive and time saving alternative that is based on the sensitivity of chosen organisms to these inhibitors was designed and financially assessed. It was confirmed that the method is technically feasible and economically viable with significant potential to reduce the bioethanol production cost.
See more in PubMed
García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol. 2009;100:1608–1613. doi: 10.1016/j.biortech.2008.09.012. PubMed DOI
Manzetti S, Andersen O. A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel. 2015;140:293–301. doi: 10.1016/j.fuel.2014.09.101. DOI
Mardoyan A, Braun P. Analysis of Czech subsidies for solid biofuels. Int J Green Energy. 2015;12:405–408. doi: 10.1080/15435075.2013.841163. DOI
Maroušek J. Finding the optimal parameters for the steam explosion process of hay. Rev Téc Ing Univ Zulia. 2012;35:170–178.
Maroušek J. Study on agriculture decision-makers behavior on sustainable energy utilization. J Agric Environ Ethics. 2013;26:679–689. doi: 10.1007/s10806-012-9423-x. DOI
Maroušek J. Prospects in straw disintegration for biogas production. Environ Sci Pollut Res. 2013;20:7268–7274. doi: 10.1007/s11356-013-1736-4. PubMed DOI
Maroušek J. Significant breakthrough in biochar cost reduction. Clean Technol Environ. 2014;16:1821–1825. doi: 10.1007/s10098-014-0730-y. DOI
Maroušek J. Novel technique to enhance the disintegration effect of the pressure waves on oilseeds. Ind Crop Prod. 2014;53:1–5. doi: 10.1016/j.indcrop.2013.11.048. DOI
Maroušek J. Economic analysis of the pressure shockwave disintegration process. Int J Green Energy. 2015;12:1232–1235. doi: 10.1080/15435075.2014.895740. DOI
Maroušek J, Kawamitsu Y, Ueno M, Kondo Y, Kolar L. Methods for improving methane yield from rye straw. Appl Eng Agric. 2012;28:747–755. doi: 10.13031/2013.42417. DOI
Maroušek J, Kondo Y, Ueno M, Kawamitsu Y. Commercial-scale utilization of greenhouse residues. Biotechnol Appl Biochem. 2013;60:253–258. doi: 10.1002/bab.1055. PubMed DOI
Maroušek J, Zeman R, Vaníčkov R, Hašková S. New concept of urban green management. Clean Technol Environ. 2014;16:1835–1838. doi: 10.1007/s10098-014-0736-5. DOI
Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R. Processing of residues from biogas plants for energy purposes. Clean Technol Environ. 2015;17:797–801. doi: 10.1007/s10098-014-0866-9. DOI
Maroušek J, Hašková S, Zeman R, Žák J, Vaníčková R, Maroušková A, Váchal J, Myšková K. Polemics on ethical aspects in the compost business. Sci Eng Ethics. 2016;22:581–590. doi: 10.1007/s11948-015-9664-y. PubMed DOI
Maroušková A, Braun P. Holistic approach to improve the energy utilization of Jatropha curcas L. Rev Téc Ing Univ Zulia. 2014;37:144–150.
Meng X, Ragauskas AJ. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol. 2014;27:150–158. doi: 10.1016/j.copbio.2014.01.014. PubMed DOI
Mesa L, González E, Cara C, González M, Castro E, Mussatto SI. The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J. 2011;168:1157–1162. doi: 10.1016/j.cej.2011.02.003. DOI
Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev. 2013;27:77–93. doi: 10.1016/j.rser.2013.06.033. DOI
Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol. 2015;35:342–354. doi: 10.3109/07388551.2013.878896. PubMed DOI
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74:17–24. doi: 10.1016/S0960-8524(99)00160-1. DOI
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25–33. doi: 10.1016/S0960-8524(99)00161-3. DOI
Rosa E, Barata C, Damásio J, Bosch MP, Guerrero A. Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. Aquat Toxicol. 2006;79:296–303. doi: 10.1016/j.aquatox.2006.06.019. PubMed DOI
Shahir VK, Jawahar CP, Suresh PR. Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—a review. Renew Sust Energy Rev. 2015;45:686–697. doi: 10.1016/j.rser.2015.02.042. DOI
Sun F, Chen H. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol. 2008;99:5474–5479. doi: 10.1016/j.biortech.2007.11.001. PubMed DOI
Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11. doi: 10.1016/S0960-8524(01)00212-7. PubMed DOI
Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem. 2009;11:390–396. doi: 10.1039/b817882h. DOI
Zabed H, Faruq G, Sahu JN, Boyce AN, Ganesan P. A comparative study on normal and high sugary corn genotypes for evaluating enzyme consumption during dry-grind ethanol production. Chem Eng J. 2016;287:691–703. doi: 10.1016/j.cej.2015.11.082. DOI
Zavrel M, Bross D, Funke M, Büchs J, Spiess AC. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol. 2009;100:2580–2587. doi: 10.1016/j.biortech.2008.11.052. PubMed DOI