Detection of Apple Hammerhead Viroid, Apple Luteovirus 1 and Citrus Concave Gum-Associated Virus in Apple Propagation Materials and Orchards in the Czech Republic and Hungary
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36366445
PubMed Central
PMC9695845
DOI
10.3390/v14112347
PII: v14112347
Knihovny.cz E-zdroje
- Klíčová slova
- HTS, aphid, apple, rootstock, transmission, viroid, virus,
- MeSH
- Citrus * MeSH
- fylogeneze MeSH
- Luteovirus * MeSH
- satelitní viry MeSH
- viroidy * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Maďarsko MeSH
Grafting cultivars onto rootstocks is a widely used practice by the apple industry predominantly aimed at faster fruit bearing. Using high-throughput sequencing, we revealed the presence of recently described viral agents, namely apple hammerhead viroid (AHVd), apple luteovirus 1 (ALV-1), and citrus concave gum-associated virus (CCGaV), in germplasm collections and production orchards in the Czech Republic and Hungary. The HTS results were validated with RT-(q)PCR, and Northern blotting techniques. To obtain further insight about the presence of these agents, RT-PCR based surveys were carried out and showed their widespread presence alone or in mixed infections. The pathogens were present both in production areas and in feral samples. In addition, rootstock-to-scion transmission of ALV-1 and CCGaV was confirmed using commercial rootstock materials. Phylogenetic relationships based on partial sequences of distinct variants were also investigated. Furthermore, the rosy apple aphid was found to be ALV-1-positive, suggesting that it might be a potential vector of the virus.
Zobrazit více v PubMed
EFSA Panel on Plant Health (PLH) Bragard C., Dehnen-Schmutz K., Gonthier P., Jacques M., Jaques Miret J.A., Justesen A.F., MacLeod A., Magnusson C.S., Milonas P., et al. List of Non-EU Viruses and Viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J. 2019;17:e05501. doi: 10.2903/j.efsa.2019.5501. PubMed DOI PMC
Wright A.A., Cross A.R., Harper S.J. A Bushel of Viruses: Identification of Seventeen Novel Putative Viruses by RNA-Seq in Six Apple Trees. PLoS ONE. 2020;15:e0227669. doi: 10.1371/journal.pone.0227669. PubMed DOI PMC
McCrum R.C., Barrat J.G., Hilborn M.T., Rich A.E. An Illustrated Review of Apple Virus Diseases. Volume 595 Maine Agricultural Experiment Station Bulletin; Orono, ME, USA: 1960.
European and Mediterranean Plant Protection Organization Pathogen-Tested Material of Malus, Pyrus and Cydonia. Bull. OEPP/EPPO. 1999;29:239–252. doi: 10.1111/j.1365-2338.1999.tb00828.x. DOI
Massart S., Candresse T., Gil J., Lacomme C., Predajna L., Ravnikar M., Reynard J.-S., Rumbou A., Saldarelli P., Škorić D., et al. A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Front. Microbiol. 2017;8:45. doi: 10.3389/fmicb.2017.00045. PubMed DOI PMC
Olmos A., Boonham N., Candresse T., Gentit P., Giovani B., Kutnjak D., Liefting L., Maree H.J., Minafra A., Moreira A., et al. High-Throughput Sequencing Technologies for Plant Pest Diagnosis: Challenges and Opportunities. EPPO Bull. 2018;48:219–224. doi: 10.1111/epp.12472. DOI
Massart S., Chiumenti M., De Jonghe K., Glover R., Haegeman A., Koloniuk I., Komínek P., Kreuze J., Kutnjak D., Lotos L., et al. Virus Detection by High-Throughput Sequencing of Small RNAs: Large-Scale Performance Testing of Sequence Analysis Strategies. Phytopathology. 2019;109:488–497. doi: 10.1094/PHYTO-02-18-0067-R. PubMed DOI
Maliogka V., Minafra A., Saldarelli P., Ruiz-García A., Glasa M., Katis N., Olmos A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses. 2018;10:436. doi: 10.3390/v10080436. PubMed DOI PMC
Bester R., Cook G., Breytenbach J.H.J., Steyn C., De Bruyn R., Maree H.J. Towards the Validation of High-Throughput Sequencing (HTS) for Routine Plant Virus Diagnostics: Measurement of Variation Linked to HTS Detection of Citrus Viruses and Viroids. Virol. J. 2021;18:61. doi: 10.1186/s12985-021-01523-1. PubMed DOI PMC
Zhang Z., Qi S., Tang N., Zhang X., Chen S., Zhu P., Ma L., Cheng J., Xu Y., Lu M., et al. Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathog. 2014;10:e1004553. doi: 10.1371/journal.ppat.1004553. PubMed DOI PMC
Serra P., Messmer A., Sanderson D., James D., Flores R. Apple Hammerhead Viroid-like RNA Is a Bona Fide Viroid: Autonomous Replication and Structural Features Support Its Inclusion as a New Member in the Genus Pelamoviroid. Virus Res. 2018;249:8–15. doi: 10.1016/j.virusres.2018.03.001. PubMed DOI
Messmer A., Sanderson D., Braun G., Serra P., Flores R., James D. Molecular and Phylogenetic Identification of Unique Isolates of Hammerhead Viroid-like RNA from ‘Pacific Gala’ Apple (Malus domestica) in Canada. Can. J. Plant Pathol. 2017;39:342–353. doi: 10.1080/07060661.2017.1354334. DOI
Szostek S.A., Wright A.A., Harper S.J. First Report of Apple Hammerhead Viroid in the United States, Japan, Italy, Spain, and New Zealand. Plant Dis. 2018;102:2670. doi: 10.1094/PDIS-04-18-0557-PDN. DOI
Hamdi I., Soltani R., Baraket G., Varsani A., Najar A. First Report of Apple Hammerhead Viroid Infecting ‘Richared Delicious’ Apple (Malus domestica) in Tunisia. J. Plant Pathol. 2022;104:811–812. doi: 10.1007/s42161-022-01027-z. DOI
Chiumenti M., Navarro B., Venerito P., Civita F., Minafra A., Di Serio F. Molecular Variability of Apple Hammerhead Viroid from Italian Apple Varieties Supports the Relevance in Vivo of Its Branched Conformation Stabilized by a Kissing Loop Interaction. Virus Res. 2019;270:197644. doi: 10.1016/j.virusres.2019.197644. PubMed DOI
Fontdevila Pareta N., Lateur M., Steyer S., Blouin A.G., Massart S. First Reports of Apple Luteovirus 1, Apple Rubodvirus 1 and Apple Hammerhead Viroid Infecting Apples in Belgium. New Dis. Rep. 2022;45:e12076. doi: 10.1002/ndr2.12076. DOI
Canales C., Morán F., Olmos A., Ruiz-García A.B. First Detection and Molecular Characterization of Apple Stem Grooving Virus, Apple Chlorotic Leaf Spot Virus, and Apple Hammerhead Viroid in Loquat in Spain. Plants. 2021;10:2293. doi: 10.3390/plants10112293. PubMed DOI PMC
Liu H., Wu L., Nikolaeva E., Peter K., Liu Z., Mollov D., Cao M., Li R. Characterization of a New Apple Luteovirus Identified by High-Throughput Sequencing. Virol. J. 2018;15:85. doi: 10.1186/s12985-018-0998-3. PubMed DOI PMC
Lim S., Baek D., Moon J.S., Cho I.S., Choi G.S., Do Y.S., Lee D.H., Lee S.H. First Report of Apple Luteovirus 1 and Apple Rubbery Wood Virus 1 on Apple Tree Rootstocks in Korea. Plant Dis. 2019;103:591. doi: 10.1094/PDIS-08-18-1351-PDN. DOI
Malandraki I., Beris D., Vassilakos N., Varveri C. First Report of Apple Luteovirus 1 in Apple Trees in Greece. Plant Dis. 2020;104:2530. doi: 10.1094/PDIS-03-20-0553-PDN. DOI
Navarro B., Minutolo M., De Stradis A., Palmisano F., Alioto D., Di Serio F. The First Phlebo-like Virus Infecting Plants: A Case Study on the Adaptation of Negative-Stranded RNA Viruses to New Hosts: Citrus Concave Gum-Associated Virus. Mol. Plant Pathol. 2018;19:1075–1089. doi: 10.1111/mpp.12587. PubMed DOI PMC
Wright A.A., Szostek S.A., Beaver-Kanuya E., Harper S.J. Diversity of Three Bunya-like Viruses Infecting Apple. Arch. Virol. 2018;163:3339–3343. doi: 10.1007/s00705-018-3999-z. PubMed DOI
Nickel O., Fajardo T.V.M., Candresse T. First Report on Detection of Three Bunya-Like Viruses in Apples in Brazil. Plant Dis. 2020;104:3088. doi: 10.1094/PDIS-02-20-0283-PDN. DOI
Liu Z., Dong Z., Zhan B., Li S. Characterization of an Isolate of Citrus Concave Gum-Associated Virus from Apples in China and Development of an RT-RPA Assay for the Rapid Detection of the Virus. Plants. 2021;10:2239. doi: 10.3390/plants10112239. PubMed DOI PMC
Minutolo M., Cinque M., Chiumenti M., Di Serio F., Alioto D., Navarro B. Identification and Characterization of Citrus Concave Gum-Associated Virus Infecting Citrus and Apple Trees by Serological, Molecular and High-Throughput Sequencing Approaches. Plants. 2021;10:2390. doi: 10.3390/plants10112390. PubMed DOI PMC
Gambino G., Perrone I., Gribaudo I. A Rapid and Effective Method for RNA Extraction from Different Tissues of Grapevine and Other Woody Plants. Phytochem. Anal. 2008;19:520–525. doi: 10.1002/pca.1078. PubMed DOI
Czotter N., Molnár J., Pesti R., Demián E., Baráth D., Varga T., Várallyay É. Use of SiRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections. In: Pantaleo V., Chiumenti M., editors. Viral Metagenomics. Volume 1746. Springer; New York, NY, USA: 2018. pp. 115–130. Methods in Molecular Biology. PubMed
Barath D., Jaksa-Czotter N., Varga T., Varallyay E. Viromes of Hungarian Peach Trees Identified by High-Throughput Sequencing of Small RNAs. Plants. 2022;11:1591. doi: 10.3390/plants11121591. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Harry M., Solignac M., Lachaise D. Molecular Evidence for Parallel Evolution of Adaptive Syndromes in Fig-Breeding Lissocephala (Drosophilidae) Mol. Phylogenetics Evol. 1998;9:542–551. doi: 10.1006/mpev.1998.0508. PubMed DOI
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Hou W., Li S., Massart S. Is There a “Biological Desert” With the Discovery of New Plant Viruses? A Retrospective Analysis for New Fruit Tree Viruses. Front. Microbiol. 2020;11:592816. doi: 10.3389/fmicb.2020.592816. PubMed DOI PMC
François S., Filloux D., Fernandez E., Ogliastro M., Roumagnac P. Viral Metagenomics Approaches for High-Resolution Screening of Multiplexed Arthropod and Plant Viral Communities. In: Pantaleo V., Chiumenti M., editors. Viral Metagenomics: Methods and Protocols. Springer; New York, NY, USA: 2018. pp. 77–95. PubMed
Milusheva S., James D. Determination of Biological Properties of Cherry Virus Trakiya and Its Incidence on Sweet Cherry (Prunus Avium L.) in Bulgaria. J. Plant Dis. Prot. 2022;129:1451–1460. doi: 10.1007/s41348-022-00651-2. DOI
Sanderson D., James D. Analysis of the Genetic Diversity of Genome Sequences of Variants of Apple Hammerhead Viroid. Can. J. Plant Pathol. 2019;41:551–559. doi: 10.1080/07060661.2019.1614672. DOI
Fusaro A., Barton D., Nakasugi K., Jackson C., Kalischuk M., Kawchuk L., Vaslin M., Correa R., Waterhouse P. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses. 2017;9:294. doi: 10.3390/v9100294. PubMed DOI PMC
Kozłowska-Makulska A., Beuve M., Syller J., Szyndel M.S., Lemaire O., Bouzoubaa S., Herrbach E. Aphid Transmissibility of Different European Beet Polerovirus Isolates. Eur. J. Plant Pathol. 2009;125:337–341. doi: 10.1007/s10658-009-9474-7. DOI
Ghosh S., Kanakala S., Lebedev G., Kontsedalov S., Silverman D., Alon T., Mor N., Sela N., Luria N., Dombrovsky A., et al. Transmission of a New Polerovirus Infecting Pepper by the Whitefly Bemisia tabaci. J. Virol. 2019;93:e00488-19. doi: 10.1128/JVI.00488-19. PubMed DOI PMC
Fránová J., Lenz O., Přibylová J., Čmejla R., Valentová L., Koloniuk I. High Incidence of Strawberry Polerovirus 1 in the Czech Republic and Its Vectors, Genetic Variability and Recombination. Viruses. 2021;13:2487. doi: 10.3390/v13122487. PubMed DOI PMC