High Incidence of Strawberry Polerovirus 1 in the Czech Republic and Its Vectors, Genetic Variability and Recombination
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34960756
PubMed Central
PMC8706236
DOI
10.3390/v13122487
PII: v13122487
Knihovny.cz E-zdroje
- Klíčová slova
- RT-PCR, mixed virus infection, strawberry, virus transmission,
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom virový MeSH
- hmyz - vektory klasifikace fyziologie virologie MeSH
- jahodník virologie MeSH
- Luteoviridae klasifikace genetika izolace a purifikace MeSH
- mšice klasifikace fyziologie virologie MeSH
- nemoci rostlin virologie MeSH
- rekombinace genetická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In total, 332 strawberry plants from 33 different locations in the Czech Republic with or without disease symptoms were screened by RT-PCR for the presence of strawberry polerovirus 1 (SPV1) and five other viruses: strawberry mottle virus, strawberry crinkle virus, strawberry mild yellow edge virus, strawberry vein banding virus, and strawberry virus 1. SPV1 was detected in 115 tested strawberry plants (35%), including 89 mixed infections. No correlation between symptoms and the detected viruses was found. To identify potential invertebrate SPV1 vectors, strawberry-associated invertebrate species were screened by RT-PCR, and the virus was found in the aphids Aphis forbesi, A. gossypii, A. ruborum, A.sanquisorbae, Aulacorthum solani, Chaetosiphon fragaefolii, Myzus ascalonicus, and several other non-aphid invertebrate species. SPV1 was also detected in aphid honeydew. Subsequent tests of C. fragaefolii and A.gossypii virus transmission ability showed that at least 4 h of acquisition time were needed to acquire the virus. However, 1 day was sufficient for inoculation using C. fragaefolii. In conclusion, being aphid-transmitted like other tested viruses SPV1 was nevertheless the most frequently detected agent. Czech SPV1 isolates belonged to at least two phylogenetic clusters. The sequence analysis also indicated that recombination events influence evolution of SPV1 genomes.
Zobrazit více v PubMed
Maas J.L. Compendium of Strawberry Diseases. 2nd ed. APS Press; St. Paul, MN, USA: 1998.
Martin R.R., Tzanetakis I.E. Characterization and Recent Advances in Detection of Strawberry Viruses. Plant Dis. 2006;90:384–396. doi: 10.1094/PD-90-0384. PubMed DOI
Ho T., Tzanetakis I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 2014;471–473:54–60. doi: 10.1016/j.virol.2014.09.019. PubMed DOI
Xiang Y., Bernardy M., Bhagwat B., Wiersma P.A., Deyoung R., Bouthillier M. The complete genome sequence of a new polerovirus in strawberry plants from eastern Canada showing strawberry decline symptoms. Arch. Virol. 2014;160:553–556. doi: 10.1007/s00705-014-2267-0. PubMed DOI
Ding X., Li Y., Hernández-Sebastià C., Abbasi P.A., Fisher P., Celetti M.J., Wang A. First Report of Strawberry crinivirus 4 on Strawberry in Canada. Plant Dis. 2016;100:1254. doi: 10.1094/PDIS-01-16-0009-PDN. DOI
Ding X., Chen D., Du Z., Zhang J., Wu Z. The complete genome sequence of a novel cytorhabdovirus identified in strawberry (Fragaria ananassa Duch) Arch. Virol. 2019;164:3127–3131. doi: 10.1007/s00705-019-04390-y. PubMed DOI
Fránová J., Přibylová J., Koloniuk I. Molecular and Biological Characterization of a New Strawberry Cytorhabdovirus. Viruses. 2019;11:982. doi: 10.3390/v11110982. PubMed DOI PMC
Lenz O., Přibylová J., Fránová J., Koloniuk I. Fragaria vesca-associated virus 1: A new virus related to negeviruses. Arch. Virol. 2020;165:1249–1252. doi: 10.1007/s00705-020-04603-9. PubMed DOI
He C., Gao D., Fan L., Xu T., Xing F., Li S., Wang H. The Occurrence of Strawberry Virus 1 Infecting Strawberry in Shandong Province, China. Plant Dis. 2021 doi: 10.1094/PDIS-01-21-0038-PDN. in press. PubMed DOI
Converse R.H. Virus Disease of Small Fruits. 1st ed. United States Department of Agriculture; Washington, DC, USA: 1987. pp. 1–288.
Martin R.R., Tzanetakis I.E. High Risk Strawberry Viruses by Region in the United States and Canada: Implications for Certification, Nurseries, and Fruit Production. Plant Dis. 2013;97:1358–1362. doi: 10.1094/PDIS-09-12-0842-RE. PubMed DOI
Diaz-Lara A., Stevens K.A., Klaassen V., Hwang M.S., Al Rwahnih A. Sequencing a strawberry germplasm collection reveals new viral genetic diversity and the basis for new RT-qPCR assays. Viruses. 2021;13:1442. doi: 10.3390/v13081442. PubMed DOI PMC
Thekke-Veetil T., Tzanetakis I.E. First report of strawberry polerovirus-1 in strawberry in the United States. Plant Dis. 2016;100:867. doi: 10.1094/PDIS-09-15-1044-PDN. DOI
Luciani C.E., Celli M.G., Merino M.C., Perotto M.C., Pozzi E., Conci V.C. First Report of Strawberry polerovirus 1 in Argentina. Plant Dis. 2016;100:1510. doi: 10.1094/PDIS-10-15-1213-PDN. DOI
Sõmera M., Fargette D., Hébrard E., Sarmiento C. ICTV Report consortium. ICTV virus taxonomy profile: Solemoviridae. J. Gen. Virol. 2021 in press. PubMed PMC
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 1994;3:294–299. PubMed
Thompson J.R., Wetzel S., Klerks M.M., Vašková D., Schoen C.D., Špak J., Jelkmann W. Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp. in combination with a plant mRNA specific internal control. J. Virol. Methods. 2003;111:85–93. doi: 10.1016/S0166-0934(03)00164-2. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 7 June 2021)]. Available online: https://www.R-project.org/
Conway J.R., Lex A., Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC
Martin D.P., Varsani A., Roumagnac P., Botha G., Maslamoney S., Schwab T., Kelz Z., Kumar V., Murrell B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021;7:veaa087. doi: 10.1093/ve/veaa087. PubMed DOI PMC
Massart S., Candresse T., Gil J.F., Lacomme C., Predajna L., Ravnikar M., Reynard J.-S., Rumbou A., Saldarelli P., Škorić D., et al. A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Front. Microbiol. 2017;8:45. doi: 10.3389/fmicb.2017.00045. PubMed DOI PMC
Ghosh S., Kanakala S., Lebedev G., Kontsedalov S., Silverman D., Alon T., Mor N., Sela N., Luria N., Dombrovsky A., et al. Transmission of a New Polerovirus Infecting Pepper by the Whitefly Bemisia tabaci. J. Virol. 2019;93:00488-19. doi: 10.1128/JVI.00488-19. PubMed DOI PMC
Fereres A., Raccah B. eLS. John Wiley & Sons, Ltd.; Chichester, UK: 2015. 2015 Plant virus transmission by insects; pp. 1–12.
Silva T., Corrêa R., Castilho Y., Silvie P., Bélot J.-L., Vaslin M. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease. Virol. J. 2008;5:123. doi: 10.1186/1743-422X-5-123. PubMed DOI PMC
Ellis M.H., Silva T.F., Stiller W.N., Wilson L.J., Vaslin M., Sharman M., Llewellyn D. Identification of a new Polerovirus (family Luteoviridae) associated with cotton bunchy top disease in Australia. Australas. Plant Pathol. 2013;42:261–269. doi: 10.1007/s13313-012-0177-8. DOI
Brault V., Heuvel J.V.D., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J., Guilley H., Richards K., Jonard G. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 1995;14:650–659. doi: 10.1002/j.1460-2075.1995.tb07043.x. PubMed DOI PMC
Brault V., Périgon S., Reinbold C., Erdinger M., Scheidecker D., Herrbach E., Richards K., Ziegler-Graff V. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid. J. Virol. 2005;79:9685–9693. doi: 10.1128/JVI.79.15.9685-9693.2005. PubMed DOI PMC
Mutterer J.D., Stussi-Garaud C., Michler P., Richards K.E., Jonard G., Ziegler-Graff V. Role of the beet western yellows virus readthrough protein in virus movement in Nicotiana clevelandii. J. Gen. Virol. 1999;80:2771–2778. doi: 10.1099/0022-1317-80-10-2771. PubMed DOI
Costa T.M., Blawid R., Aranda M.A., Freitas D.M.S., Andrade G.P., Inoue-Nagata A.K., Nagata T. Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant. Arch. Virol. 2018;164:249–254. doi: 10.1007/s00705-018-4024-2. PubMed DOI
Paredes C., Rosales L.S., Gallegos V., Castellanos M., Garfias A.E.J.Y., González P. Incidence of mixed viral infections in a strawberry producing area in Guanajuato, Mexico. Rev. Mex. Fitopatol. (En Línea) 2014;32:12–25.