Analysis of Virus-Derived siRNAs in Strawberry Plants Co-Infected with Multiple Viruses and Their Genotypes

. 2023 Jul 06 ; 12 (13) : . [epub] 20230706

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37447124

Grantová podpora
19-22187Y Czech Science Foundation
K127951 National Research Development and Innovation Office
K134895 National Research Development and Innovation Office

Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant co-infected with several strains of strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). A range of plants infected with subsets of the initial viral species and strains that were obtained by aphid-mediated transmission were also evaluated. Using high-throughput sequencing, we characterized the small RNA fractions associated with different genotypes of these three viruses and determined small RNA hotspot regions in viral genomes. A comparison of virus-specific siRNA (vsiRNA) abundance with relative viral concentrations did not reveal any consistent agreement. Strawberry mottle virus strains exhibiting considerable variations in concentrations were found to be associated with comparable quantities of vsiRNAs. Additionally, by estimating the specificity of siRNAs to different viral strains, we observed that a substantial pool of vsiRNAs could target all SMoV strains, while strain-specific vsiRNAs predominantly targeted rhabdoviruses, SCV and StrV-1. This highlights the intricate nature and potential interference of the antiviral response within a single infected plant when multiple viruses are present.

Zobrazit více v PubMed

Ding S.-W., Voinnet O. Antiviral Immunity Directed by Small RNAs. Cell. 2007;130:413–426. doi: 10.1016/j.cell.2007.07.039. PubMed DOI PMC

Molnár A., Csorba T., Lakatos L., Várallyay É., Lacomme C., Burgyán J. Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. J. Virol. 2005;79:7812–7818. doi: 10.1128/JVI.79.12.7812-7818.2005. PubMed DOI PMC

Pooggin M.M. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front. Microbiol. 2018;9:2779. doi: 10.3389/fmicb.2018.02779. PubMed DOI PMC

Brodersen P., Voinnet O. The Diversity of RNA Silencing Pathways in Plants. Trends Genet. 2006;22:268–280. doi: 10.1016/j.tig.2006.03.003. PubMed DOI

Sijen T., Fleenor J., Simmer F., Thijssen K.L., Parrish S., Timmons L., Plasterk R.H.A., Fire A. On the Role of RNA Amplification in DsRNA-Triggered Gene Silencing. Cell. 2001;107:465–476. doi: 10.1016/S0092-8674(01)00576-1. PubMed DOI

Parent J.-S., Bouteiller N., Elmayan T., Vaucheret H. Respective Contributions of Arabidopsis DCL2 and DCL4 to RNA Silencing. Plant J. 2015;81:223–232. doi: 10.1111/tpj.12720. PubMed DOI

Mohamed A., Jin Z., Osman T., Shi N., Tör M., Jackson S., Hong Y. Hotspot SiRNA Confers Plant Resistance against Viral Infection. Biology. 2022;11:714. doi: 10.3390/biology11050714. PubMed DOI PMC

Rego-Machado C.M., Nakasu E.Y.T., Silva J.M.F., Lucinda N., Nagata T., Inoue-Nagata A.K. SiRNA Biogenesis and Advances in Topically Applied DsRNA for Controlling Virus Infections in Tomato Plants. Sci. Rep. 2020;10:22277. doi: 10.1038/s41598-020-79360-5. PubMed DOI PMC

Rêgo-Machado C.M., Inoue-Nagata A.K., Nakasu E.Y.T. Topical Application of DsRNA for Plant Virus Control: A Review. Trop. Plant Pathol. 2023;48:11–22. doi: 10.1007/s40858-022-00534-9. DOI

Voloudakis A.E., Kaldis A., Patil B.L. RNA-Based Vaccination of Plants for Control of Viruses. Annu. Rev. Virol. 2022;9:521–548. doi: 10.1146/annurev-virology-091919-073708. PubMed DOI

Syller J. Facilitative and Antagonistic Interactions between Plant Viruses in Mixed Infections: Plant Virus Interactions in Mixed Infections. Mol. Plant Pathol. 2012;13:204–216. doi: 10.1111/j.1364-3703.2011.00734.x. PubMed DOI PMC

Villamor D.E.V., Ho T., Al Rwahnih M., Martin R.R., Tzanetakis I.E. High Throughput Sequencing For Plant Virus Detection and Discovery. Phytopathology. 2019;109:716–725. doi: 10.1094/PHYTO-07-18-0257-RVW. PubMed DOI

Moreno A.B., López-Moya J.J. When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology. 2020;110:29–48. doi: 10.1094/PHYTO-07-19-0250-FI. PubMed DOI

Villamor D.E.V., Keller K.E., Martin R.R., Tzanetakis I.E. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. Plant Dis. 2022;106:518–525. doi: 10.1094/PDIS-05-21-0949-RE. PubMed DOI

Xu Y., Ghanim M., Liu Y. Editorial: Mixed Infections of Plant Viruses in Nature and the Impact on Agriculture. Front. Microbiol. 2022;13:922607. doi: 10.3389/fmicb.2022.922607. PubMed DOI PMC

Cuevas J.M., Willemsen A., Hillung J., Zwart M.P., Elena S.F. Temporal Dynamics of Intrahost Molecular Evolution for a Plant RNA Virus. Mol. Biol. Evol. 2015;32:1132–1147. doi: 10.1093/molbev/msv028. PubMed DOI

Hasiów-Jaroszewska B., Boezen D., Zwart M.P. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses. 2021;13:1939. doi: 10.3390/v13101939. PubMed DOI PMC

Makau D.N., Lycett S., Michalska-Smith M., Paploski I.A.D., Cheeran M.C.-J., Craft M.E., Kao R.R., Schroeder D.C., Doeschl-Wilson A., VanderWaal K. Ecological and Evolutionary Dynamics of Multi-Strain RNA Viruses. Nat. Ecol. Evol. 2022;6:1414–1422. doi: 10.1038/s41559-022-01860-6. PubMed DOI

Schreiber S.J., Ke R., Loverdo C., Park M., Ahsan P., Lloyd-Smith J.O. Cross-Scale Dynamics and the Evolutionary Emergence of Infectious Diseases. Virus Evol. 2021;7:veaa105. doi: 10.1093/ve/veaa105. PubMed DOI PMC

Nuismer S.L., Basinski A.J., Schreiner C., Whitlock A., Remien C.H. Reservoir Population Ecology, Viral Evolution and the Risk of Emerging Infectious Disease. Proc. R. Soc. B Biol. Sci. 2022;289:20221080. doi: 10.1098/rspb.2022.1080. PubMed DOI PMC

Syller J., Grupa A. Antagonistic Within-Host Interactions between Plant Viruses: Molecular Basis and Impact on Viral and Host Fitness: Antagonistic Interactions between Plant Viruses. Mol. Plant Pathol. 2016;17:769–782. doi: 10.1111/mpp.12322. PubMed DOI PMC

Allen L.J.S., Bokil V.A., Cunniffe N.J., Hamelin F.M., Hilker F.M., Jeger M.J. Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses. Viruses. 2019;11:1153. doi: 10.3390/v11121153. PubMed DOI PMC

Jeger M.J. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. Plants. 2020;9:1768. doi: 10.3390/plants9121768. PubMed DOI PMC

Piche L.M., Singh R.P., Nie X., Gudmestad N.C. Diversity Among Potato Virus Y Isolates Obtained from Potatoes Grown in the United States. Phytopathology. 2004;94:1368–1375. doi: 10.1094/PHYTO.2004.94.12.1368. PubMed DOI

Folimonova S.Y., Harper S.J., Leonard M.T., Triplett E.W., Shilts T. Superinfection Exclusion by Citrus Tristeza Virus Does Not Correlate with the Production of Viral Small RNAs. Virology. 2014;468–470:462–471. doi: 10.1016/j.virol.2014.08.031. PubMed DOI

Bergua M., Kang S.-H., Folimonova S.Y. Understanding Superinfection Exclusion by Complex Populations of Citrus Tristeza Virus. Virology. 2016;499:331–339. doi: 10.1016/j.virol.2016.10.001. PubMed DOI

Della Bartola M., Byrne S., Mullins E. Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses. 2020;12:478. doi: 10.3390/v12040478. PubMed DOI PMC

Zhang X.-F., Zhang S., Guo Q., Sun R., Wei T., Qu F. A New Mechanistic Model for Viral Cross Protection and Superinfection Exclusion. Front. Plant Sci. 2018;9:40. doi: 10.3389/fpls.2018.00040. PubMed DOI PMC

Ziebell H., Carr J.P. Advances in Virus Research. Volume 76. Elsevier; Amsterdam, The Netherlands: 2010. Cross-Protection; pp. 211–264. PubMed

Folimonova S.Y. Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. J. Virol. 2012;86:5554–5561. doi: 10.1128/JVI.00310-12. PubMed DOI PMC

Simón-Mateo C., García J.A. Antiviral Strategies in Plants Based on RNA Silencing. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2011;1809:722–731. doi: 10.1016/j.bbagrm.2011.05.011. PubMed DOI

Kung Y.-J., Lin P.-C., Yeh S.-D., Hong S.-F., Chua N.-H., Liu L.-Y., Lin C.-P., Huang Y.-H., Wu H.-W., Chen C.-C., et al. Genetic Analyses of the FRNK Motif Function of Turnip Mosaic Virus Uncover Multiple and Potentially Interactive Pathways of Cross-Protection. Mol. Plant-Microbe Interact. 2014;27:944–955. doi: 10.1094/MPMI-04-14-0116-R. PubMed DOI

Mesel F., Zhao M., García B., Simón-Mateo C., García J.A. Targeting of Genomic and Negative-sense Strands of Viral RNA Contributes to Antiviral Resistance Mediated by Artificial miRNAs and Promotes the Emergence of Complex Viral Populations. Mol. Plant Pathol. 2022;23:1640–1657. doi: 10.1111/mpp.13258. PubMed DOI PMC

Maas J.L., editor. Compendium of Strawberry Diseases. 2nd ed. The American Phytopathological Society; St. Paul, MN, USA: 1998.

Martin R.R., Tzanetakis I.E. Characterization and Recent Advances in Detection of Strawberry Viruses. Plant Dis. 2006;90:384–396. doi: 10.1094/PD-90-0384. PubMed DOI

Tzanetakis I.E., Martin R.R. Expanding Field of Strawberry Viruses Which Are Important in North America. Int. J. Fruit Sci. 2013;13:184–195. doi: 10.1080/15538362.2012.698164. DOI

Bonneau P., Hogue R., Tellier S., Fournier V. Evaluation of Various Sources of Viral Infection in Strawberry Fields of Quebec, Canada. J. Econ. Entomol. 2019;112:2577–2583. doi: 10.1093/jee/toz205. PubMed DOI

Diaz-Lara A., Stevens K.A., Klaassen V., Hwang M.S., Al Rwahnih M. Sequencing a Strawberry Germplasm Collection Reveals New Viral Genetic Diversity and the Basis for New RT-QPCR Assays. Viruses. 2021;13:1442. doi: 10.3390/v13081442. PubMed DOI PMC

Torrico A.K., Salazar S.M., Kirschbaum D.S., Conci V.C. Yield Losses of Asymptomatic Strawberry Plants Infected with Strawberry Mild Yellow Edge Virus. Eur. J. Plant Pathol. 2018;150:983–990. doi: 10.1007/s10658-017-1337-z. DOI

Valentova L., Rejlova M., Franova J., Cmejla R. Symptomless Infection by Strawberry Virus 1 (StrV-1) Leads to Losses in Strawberry Yields. Plant Pathol. 2022;71:1220–1228. doi: 10.1111/ppa.13548. DOI

Fránová J., Přibylová J., Koloniuk I. Molecular and Biological Characterization of a New Strawberry Cytorhabdovirus. Viruses. 2019;11:982. doi: 10.3390/v11110982. PubMed DOI PMC

Fránová J., Lenz O., Přibylová J., Čmejla R., Valentová L., Koloniuk I. High Incidence of Strawberry Polerovirus 1 in the Czech Republic and Its Vectors, Genetic Variability and Recombination. Viruses. 2021;13:2487. doi: 10.3390/v13122487. PubMed DOI PMC

Koloniuk I., Fránová J., Sarkisova T., Přibylová J. Complete Genome Sequences of Two Divergent Isolates of Strawberry Crinkle Virus Coinfecting a Single Strawberry Plant. Arch. Virol. 2018;163:2539–2542. doi: 10.1007/s00705-018-3860-4. PubMed DOI

Koloniuk I., Matyášová A., Brázdová S., Veselá J., Přibylová J., Fránová J., Elena S.F. Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species. Viruses. 2022;14:1362. doi: 10.3390/v14071362. PubMed DOI PMC

Bhagwat B., Dickison V., Ding X., Walker M., Bernardy M., Bouthillier M., Creelman A., DeYoung R., Li Y., Nie X., et al. Genome Sequence Analysis of Five Canadian Isolates of Strawberry Mottle Virus Reveals Extensive Intra-Species Diversity and a Longer RNA2 with Increased Coding Capacity Compared to a Previously Characterized European Isolate. Arch. Virol. 2016;161:1657–1663. doi: 10.1007/s00705-016-2799-6. PubMed DOI

Cieślińska M. Genetic Diversity of Seven Strawberry Mottle Virus Isolates in Poland. Plant Pathol. J. 2019;35:389–392. doi: 10.5423/PPJ.NT.12.2018.0306. PubMed DOI PMC

Fan L., He C., Wu M., Gao D., Dong Z., Hou S., Feng Z., Wang H. Incidence, Genomic Diversity, and Evolution of Strawberry Mottle Virus in China. Biocell. 2021;45:1137–1151. doi: 10.32604/biocell.2021.015396. DOI

Shanks C.H. Seasonal Populations of the Strawberry Aphid and Transmission of Strawberry Viruses in the Field in Relation to Virus Control in Western Washington1. J. Econ. Entomol. 1965;58:316–322. doi: 10.1093/jee/58.2.316. DOI

Shao Y., Chan C.Y., Maliyekkel A., Lawrence C.E., Roninson I.B., Ding Y. Effect of Target Secondary Structure on RNAi Efficiency. RNA. 2007;13:1631–1640. doi: 10.1261/rna.546207. PubMed DOI PMC

Simon A.E., Miller W.A. 3′ Cap-Independent Translation Enhancers of Plant Viruses. Annu. Rev. Microbiol. 2013;67:21–42. doi: 10.1146/annurev-micro-092412-155609. PubMed DOI PMC

Bera S., Ilyas M., Mikkelsen A.A., Simon A.E. Conserved Structure Associated with Different 3′CITEs Is Important for Translation of Umbraviruses. Viruses. 2023;15:638. doi: 10.3390/v15030638. PubMed DOI PMC

Miozzi L., Pantaleo V., Burgyán J., Accotto G.P., Noris E. Analysis of Small RNAs Derived from Tomato Yellow Leaf Curl Sardinia Virus Reveals a Cross Reaction between the Major Viral Hotspot and the Plant Host Genome. Virus Res. 2013;178:287–296. doi: 10.1016/j.virusres.2013.09.029. PubMed DOI

Murad L., Bielawski J.P., Matyasek R., Kovarík A., Nichols R.A., Leitch A.R., Lichtenstein C.P. The Origin and Evolution of Geminivirus-Related DNA Sequences in Nicotiana. Heredity. 2004;92:352–358. doi: 10.1038/sj.hdy.6800431. PubMed DOI

Kircher M., Sawyer S., Meyer M. Double Indexing Overcomes Inaccuracies in Multiplex Sequencing on the Illumina Platform. Nucleic Acids Res. 2012;40:e3. doi: 10.1093/nar/gkr771. PubMed DOI PMC

Kutnjak D., Tamisier L., Adams I., Boonham N., Candresse T., Chiumenti M., De Jonghe K., Kreuze J.F., Lefebvre M., Silva G., et al. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms. 2021;9:841. doi: 10.3390/microorganisms9040841. PubMed DOI PMC

Zhao D., Song G. High-Throughput Sequencing as an Effective Approach in Profiling Small RNAs Derived from a Hairpin RNA Expression Vector in Woody Plants. Plant Sci. 2014;228:39–47. doi: 10.1016/j.plantsci.2014.02.013. PubMed DOI

Fuentes A., Carlos N., Ruiz Y., Callard D., Sánchez Y., Ochagavía M.E., Seguin J., Malpica-López N., Hohn T., Lecca M.R., et al. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus. Mol. Plant-Microbe Interact. 2016;29:197–209. doi: 10.1094/MPMI-08-15-0181-R. PubMed DOI

Simon A.E., Roossinck M.J., Havelda Z. Plant Virus Satellite and Defective Interfering RNAs: New Paradigms for a New Century. Annu. Rev. Phytopathol. 2004;42:415–437. doi: 10.1146/annurev.phyto.42.040803.140402. PubMed DOI

Várallyay É., Oláh E., Havelda Z. Independent Parallel Functions of P19 Plant Viral Suppressor of RNA Silencing Required for Effective Suppressor Activity. Nucleic Acids Res. 2014;42:599–608. doi: 10.1093/nar/gkt846. PubMed DOI PMC

Fan L., He C., Gao D., Xu T., Xing F., Yan J., Zhan B., Li S., Wang H. Identification of Silencing Suppressor Protein Encoded by Strawberry Mottle Virus. Front. Plant Sci. 2022;13:786489. doi: 10.3389/fpls.2022.786489. PubMed DOI PMC

R Development Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2014.

Zhang Y., Peng X., Liu Y., Li Y., Luo Y., Wang X., Tang H. Evaluation of Suitable Reference Genes for QRT-PCR Normalization in Strawberry (Fragaria × Ananassa) under Different Experimental Conditions. BMC Mol. Biol. 2018;19:8. doi: 10.1186/s12867-018-0109-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace