Analysis of Virus-Derived siRNAs in Strawberry Plants Co-Infected with Multiple Viruses and Their Genotypes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-22187Y
Czech Science Foundation
K127951
National Research Development and Innovation Office
K134895
National Research Development and Innovation Office
PubMed
37447124
PubMed Central
PMC10346599
DOI
10.3390/plants12132564
PII: plants12132564
Knihovny.cz E-zdroje
- Klíčová slova
- RNA silencing, multistrain virus infection, strawberry virus, vsiRNA,
- Publikační typ
- časopisecké články MeSH
Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant co-infected with several strains of strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). A range of plants infected with subsets of the initial viral species and strains that were obtained by aphid-mediated transmission were also evaluated. Using high-throughput sequencing, we characterized the small RNA fractions associated with different genotypes of these three viruses and determined small RNA hotspot regions in viral genomes. A comparison of virus-specific siRNA (vsiRNA) abundance with relative viral concentrations did not reveal any consistent agreement. Strawberry mottle virus strains exhibiting considerable variations in concentrations were found to be associated with comparable quantities of vsiRNAs. Additionally, by estimating the specificity of siRNAs to different viral strains, we observed that a substantial pool of vsiRNAs could target all SMoV strains, while strain-specific vsiRNAs predominantly targeted rhabdoviruses, SCV and StrV-1. This highlights the intricate nature and potential interference of the antiviral response within a single infected plant when multiple viruses are present.
Zobrazit více v PubMed
Ding S.-W., Voinnet O. Antiviral Immunity Directed by Small RNAs. Cell. 2007;130:413–426. doi: 10.1016/j.cell.2007.07.039. PubMed DOI PMC
Molnár A., Csorba T., Lakatos L., Várallyay É., Lacomme C., Burgyán J. Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. J. Virol. 2005;79:7812–7818. doi: 10.1128/JVI.79.12.7812-7818.2005. PubMed DOI PMC
Pooggin M.M. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front. Microbiol. 2018;9:2779. doi: 10.3389/fmicb.2018.02779. PubMed DOI PMC
Brodersen P., Voinnet O. The Diversity of RNA Silencing Pathways in Plants. Trends Genet. 2006;22:268–280. doi: 10.1016/j.tig.2006.03.003. PubMed DOI
Sijen T., Fleenor J., Simmer F., Thijssen K.L., Parrish S., Timmons L., Plasterk R.H.A., Fire A. On the Role of RNA Amplification in DsRNA-Triggered Gene Silencing. Cell. 2001;107:465–476. doi: 10.1016/S0092-8674(01)00576-1. PubMed DOI
Parent J.-S., Bouteiller N., Elmayan T., Vaucheret H. Respective Contributions of Arabidopsis DCL2 and DCL4 to RNA Silencing. Plant J. 2015;81:223–232. doi: 10.1111/tpj.12720. PubMed DOI
Mohamed A., Jin Z., Osman T., Shi N., Tör M., Jackson S., Hong Y. Hotspot SiRNA Confers Plant Resistance against Viral Infection. Biology. 2022;11:714. doi: 10.3390/biology11050714. PubMed DOI PMC
Rego-Machado C.M., Nakasu E.Y.T., Silva J.M.F., Lucinda N., Nagata T., Inoue-Nagata A.K. SiRNA Biogenesis and Advances in Topically Applied DsRNA for Controlling Virus Infections in Tomato Plants. Sci. Rep. 2020;10:22277. doi: 10.1038/s41598-020-79360-5. PubMed DOI PMC
Rêgo-Machado C.M., Inoue-Nagata A.K., Nakasu E.Y.T. Topical Application of DsRNA for Plant Virus Control: A Review. Trop. Plant Pathol. 2023;48:11–22. doi: 10.1007/s40858-022-00534-9. DOI
Voloudakis A.E., Kaldis A., Patil B.L. RNA-Based Vaccination of Plants for Control of Viruses. Annu. Rev. Virol. 2022;9:521–548. doi: 10.1146/annurev-virology-091919-073708. PubMed DOI
Syller J. Facilitative and Antagonistic Interactions between Plant Viruses in Mixed Infections: Plant Virus Interactions in Mixed Infections. Mol. Plant Pathol. 2012;13:204–216. doi: 10.1111/j.1364-3703.2011.00734.x. PubMed DOI PMC
Villamor D.E.V., Ho T., Al Rwahnih M., Martin R.R., Tzanetakis I.E. High Throughput Sequencing For Plant Virus Detection and Discovery. Phytopathology. 2019;109:716–725. doi: 10.1094/PHYTO-07-18-0257-RVW. PubMed DOI
Moreno A.B., López-Moya J.J. When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology. 2020;110:29–48. doi: 10.1094/PHYTO-07-19-0250-FI. PubMed DOI
Villamor D.E.V., Keller K.E., Martin R.R., Tzanetakis I.E. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. Plant Dis. 2022;106:518–525. doi: 10.1094/PDIS-05-21-0949-RE. PubMed DOI
Xu Y., Ghanim M., Liu Y. Editorial: Mixed Infections of Plant Viruses in Nature and the Impact on Agriculture. Front. Microbiol. 2022;13:922607. doi: 10.3389/fmicb.2022.922607. PubMed DOI PMC
Cuevas J.M., Willemsen A., Hillung J., Zwart M.P., Elena S.F. Temporal Dynamics of Intrahost Molecular Evolution for a Plant RNA Virus. Mol. Biol. Evol. 2015;32:1132–1147. doi: 10.1093/molbev/msv028. PubMed DOI
Hasiów-Jaroszewska B., Boezen D., Zwart M.P. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses. 2021;13:1939. doi: 10.3390/v13101939. PubMed DOI PMC
Makau D.N., Lycett S., Michalska-Smith M., Paploski I.A.D., Cheeran M.C.-J., Craft M.E., Kao R.R., Schroeder D.C., Doeschl-Wilson A., VanderWaal K. Ecological and Evolutionary Dynamics of Multi-Strain RNA Viruses. Nat. Ecol. Evol. 2022;6:1414–1422. doi: 10.1038/s41559-022-01860-6. PubMed DOI
Schreiber S.J., Ke R., Loverdo C., Park M., Ahsan P., Lloyd-Smith J.O. Cross-Scale Dynamics and the Evolutionary Emergence of Infectious Diseases. Virus Evol. 2021;7:veaa105. doi: 10.1093/ve/veaa105. PubMed DOI PMC
Nuismer S.L., Basinski A.J., Schreiner C., Whitlock A., Remien C.H. Reservoir Population Ecology, Viral Evolution and the Risk of Emerging Infectious Disease. Proc. R. Soc. B Biol. Sci. 2022;289:20221080. doi: 10.1098/rspb.2022.1080. PubMed DOI PMC
Syller J., Grupa A. Antagonistic Within-Host Interactions between Plant Viruses: Molecular Basis and Impact on Viral and Host Fitness: Antagonistic Interactions between Plant Viruses. Mol. Plant Pathol. 2016;17:769–782. doi: 10.1111/mpp.12322. PubMed DOI PMC
Allen L.J.S., Bokil V.A., Cunniffe N.J., Hamelin F.M., Hilker F.M., Jeger M.J. Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses. Viruses. 2019;11:1153. doi: 10.3390/v11121153. PubMed DOI PMC
Jeger M.J. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. Plants. 2020;9:1768. doi: 10.3390/plants9121768. PubMed DOI PMC
Piche L.M., Singh R.P., Nie X., Gudmestad N.C. Diversity Among Potato Virus Y Isolates Obtained from Potatoes Grown in the United States. Phytopathology. 2004;94:1368–1375. doi: 10.1094/PHYTO.2004.94.12.1368. PubMed DOI
Folimonova S.Y., Harper S.J., Leonard M.T., Triplett E.W., Shilts T. Superinfection Exclusion by Citrus Tristeza Virus Does Not Correlate with the Production of Viral Small RNAs. Virology. 2014;468–470:462–471. doi: 10.1016/j.virol.2014.08.031. PubMed DOI
Bergua M., Kang S.-H., Folimonova S.Y. Understanding Superinfection Exclusion by Complex Populations of Citrus Tristeza Virus. Virology. 2016;499:331–339. doi: 10.1016/j.virol.2016.10.001. PubMed DOI
Della Bartola M., Byrne S., Mullins E. Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses. 2020;12:478. doi: 10.3390/v12040478. PubMed DOI PMC
Zhang X.-F., Zhang S., Guo Q., Sun R., Wei T., Qu F. A New Mechanistic Model for Viral Cross Protection and Superinfection Exclusion. Front. Plant Sci. 2018;9:40. doi: 10.3389/fpls.2018.00040. PubMed DOI PMC
Ziebell H., Carr J.P. Advances in Virus Research. Volume 76. Elsevier; Amsterdam, The Netherlands: 2010. Cross-Protection; pp. 211–264. PubMed
Folimonova S.Y. Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. J. Virol. 2012;86:5554–5561. doi: 10.1128/JVI.00310-12. PubMed DOI PMC
Simón-Mateo C., García J.A. Antiviral Strategies in Plants Based on RNA Silencing. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2011;1809:722–731. doi: 10.1016/j.bbagrm.2011.05.011. PubMed DOI
Kung Y.-J., Lin P.-C., Yeh S.-D., Hong S.-F., Chua N.-H., Liu L.-Y., Lin C.-P., Huang Y.-H., Wu H.-W., Chen C.-C., et al. Genetic Analyses of the FRNK Motif Function of Turnip Mosaic Virus Uncover Multiple and Potentially Interactive Pathways of Cross-Protection. Mol. Plant-Microbe Interact. 2014;27:944–955. doi: 10.1094/MPMI-04-14-0116-R. PubMed DOI
Mesel F., Zhao M., García B., Simón-Mateo C., García J.A. Targeting of Genomic and Negative-sense Strands of Viral RNA Contributes to Antiviral Resistance Mediated by Artificial miRNAs and Promotes the Emergence of Complex Viral Populations. Mol. Plant Pathol. 2022;23:1640–1657. doi: 10.1111/mpp.13258. PubMed DOI PMC
Maas J.L., editor. Compendium of Strawberry Diseases. 2nd ed. The American Phytopathological Society; St. Paul, MN, USA: 1998.
Martin R.R., Tzanetakis I.E. Characterization and Recent Advances in Detection of Strawberry Viruses. Plant Dis. 2006;90:384–396. doi: 10.1094/PD-90-0384. PubMed DOI
Tzanetakis I.E., Martin R.R. Expanding Field of Strawberry Viruses Which Are Important in North America. Int. J. Fruit Sci. 2013;13:184–195. doi: 10.1080/15538362.2012.698164. DOI
Bonneau P., Hogue R., Tellier S., Fournier V. Evaluation of Various Sources of Viral Infection in Strawberry Fields of Quebec, Canada. J. Econ. Entomol. 2019;112:2577–2583. doi: 10.1093/jee/toz205. PubMed DOI
Diaz-Lara A., Stevens K.A., Klaassen V., Hwang M.S., Al Rwahnih M. Sequencing a Strawberry Germplasm Collection Reveals New Viral Genetic Diversity and the Basis for New RT-QPCR Assays. Viruses. 2021;13:1442. doi: 10.3390/v13081442. PubMed DOI PMC
Torrico A.K., Salazar S.M., Kirschbaum D.S., Conci V.C. Yield Losses of Asymptomatic Strawberry Plants Infected with Strawberry Mild Yellow Edge Virus. Eur. J. Plant Pathol. 2018;150:983–990. doi: 10.1007/s10658-017-1337-z. DOI
Valentova L., Rejlova M., Franova J., Cmejla R. Symptomless Infection by Strawberry Virus 1 (StrV-1) Leads to Losses in Strawberry Yields. Plant Pathol. 2022;71:1220–1228. doi: 10.1111/ppa.13548. DOI
Fránová J., Přibylová J., Koloniuk I. Molecular and Biological Characterization of a New Strawberry Cytorhabdovirus. Viruses. 2019;11:982. doi: 10.3390/v11110982. PubMed DOI PMC
Fránová J., Lenz O., Přibylová J., Čmejla R., Valentová L., Koloniuk I. High Incidence of Strawberry Polerovirus 1 in the Czech Republic and Its Vectors, Genetic Variability and Recombination. Viruses. 2021;13:2487. doi: 10.3390/v13122487. PubMed DOI PMC
Koloniuk I., Fránová J., Sarkisova T., Přibylová J. Complete Genome Sequences of Two Divergent Isolates of Strawberry Crinkle Virus Coinfecting a Single Strawberry Plant. Arch. Virol. 2018;163:2539–2542. doi: 10.1007/s00705-018-3860-4. PubMed DOI
Koloniuk I., Matyášová A., Brázdová S., Veselá J., Přibylová J., Fránová J., Elena S.F. Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species. Viruses. 2022;14:1362. doi: 10.3390/v14071362. PubMed DOI PMC
Bhagwat B., Dickison V., Ding X., Walker M., Bernardy M., Bouthillier M., Creelman A., DeYoung R., Li Y., Nie X., et al. Genome Sequence Analysis of Five Canadian Isolates of Strawberry Mottle Virus Reveals Extensive Intra-Species Diversity and a Longer RNA2 with Increased Coding Capacity Compared to a Previously Characterized European Isolate. Arch. Virol. 2016;161:1657–1663. doi: 10.1007/s00705-016-2799-6. PubMed DOI
Cieślińska M. Genetic Diversity of Seven Strawberry Mottle Virus Isolates in Poland. Plant Pathol. J. 2019;35:389–392. doi: 10.5423/PPJ.NT.12.2018.0306. PubMed DOI PMC
Fan L., He C., Wu M., Gao D., Dong Z., Hou S., Feng Z., Wang H. Incidence, Genomic Diversity, and Evolution of Strawberry Mottle Virus in China. Biocell. 2021;45:1137–1151. doi: 10.32604/biocell.2021.015396. DOI
Shanks C.H. Seasonal Populations of the Strawberry Aphid and Transmission of Strawberry Viruses in the Field in Relation to Virus Control in Western Washington1. J. Econ. Entomol. 1965;58:316–322. doi: 10.1093/jee/58.2.316. DOI
Shao Y., Chan C.Y., Maliyekkel A., Lawrence C.E., Roninson I.B., Ding Y. Effect of Target Secondary Structure on RNAi Efficiency. RNA. 2007;13:1631–1640. doi: 10.1261/rna.546207. PubMed DOI PMC
Simon A.E., Miller W.A. 3′ Cap-Independent Translation Enhancers of Plant Viruses. Annu. Rev. Microbiol. 2013;67:21–42. doi: 10.1146/annurev-micro-092412-155609. PubMed DOI PMC
Bera S., Ilyas M., Mikkelsen A.A., Simon A.E. Conserved Structure Associated with Different 3′CITEs Is Important for Translation of Umbraviruses. Viruses. 2023;15:638. doi: 10.3390/v15030638. PubMed DOI PMC
Miozzi L., Pantaleo V., Burgyán J., Accotto G.P., Noris E. Analysis of Small RNAs Derived from Tomato Yellow Leaf Curl Sardinia Virus Reveals a Cross Reaction between the Major Viral Hotspot and the Plant Host Genome. Virus Res. 2013;178:287–296. doi: 10.1016/j.virusres.2013.09.029. PubMed DOI
Murad L., Bielawski J.P., Matyasek R., Kovarík A., Nichols R.A., Leitch A.R., Lichtenstein C.P. The Origin and Evolution of Geminivirus-Related DNA Sequences in Nicotiana. Heredity. 2004;92:352–358. doi: 10.1038/sj.hdy.6800431. PubMed DOI
Kircher M., Sawyer S., Meyer M. Double Indexing Overcomes Inaccuracies in Multiplex Sequencing on the Illumina Platform. Nucleic Acids Res. 2012;40:e3. doi: 10.1093/nar/gkr771. PubMed DOI PMC
Kutnjak D., Tamisier L., Adams I., Boonham N., Candresse T., Chiumenti M., De Jonghe K., Kreuze J.F., Lefebvre M., Silva G., et al. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms. 2021;9:841. doi: 10.3390/microorganisms9040841. PubMed DOI PMC
Zhao D., Song G. High-Throughput Sequencing as an Effective Approach in Profiling Small RNAs Derived from a Hairpin RNA Expression Vector in Woody Plants. Plant Sci. 2014;228:39–47. doi: 10.1016/j.plantsci.2014.02.013. PubMed DOI
Fuentes A., Carlos N., Ruiz Y., Callard D., Sánchez Y., Ochagavía M.E., Seguin J., Malpica-López N., Hohn T., Lecca M.R., et al. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus. Mol. Plant-Microbe Interact. 2016;29:197–209. doi: 10.1094/MPMI-08-15-0181-R. PubMed DOI
Simon A.E., Roossinck M.J., Havelda Z. Plant Virus Satellite and Defective Interfering RNAs: New Paradigms for a New Century. Annu. Rev. Phytopathol. 2004;42:415–437. doi: 10.1146/annurev.phyto.42.040803.140402. PubMed DOI
Várallyay É., Oláh E., Havelda Z. Independent Parallel Functions of P19 Plant Viral Suppressor of RNA Silencing Required for Effective Suppressor Activity. Nucleic Acids Res. 2014;42:599–608. doi: 10.1093/nar/gkt846. PubMed DOI PMC
Fan L., He C., Gao D., Xu T., Xing F., Yan J., Zhan B., Li S., Wang H. Identification of Silencing Suppressor Protein Encoded by Strawberry Mottle Virus. Front. Plant Sci. 2022;13:786489. doi: 10.3389/fpls.2022.786489. PubMed DOI PMC
R Development Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2014.
Zhang Y., Peng X., Liu Y., Li Y., Luo Y., Wang X., Tang H. Evaluation of Suitable Reference Genes for QRT-PCR Normalization in Strawberry (Fragaria × Ananassa) under Different Experimental Conditions. BMC Mol. Biol. 2018;19:8. doi: 10.1186/s12867-018-0109-4. PubMed DOI PMC