Synthesis and Modification of Clinoptilolite
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28677630
PubMed Central
PMC6152275
DOI
10.3390/molecules22071107
PII: molecules22071107
Knihovny.cz E-zdroje
- Klíčová slova
- HDTMA, clinoptilolite crystallization, hydrothermal synthesis, surfactant modification, zeolite,
- MeSH
- krystalizace MeSH
- organické látky chemie MeSH
- teplota MeSH
- zeolity chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- clinoptilolite MeSH Prohlížeč
- organické látky MeSH
- zeolity MeSH
Clinoptilolite is a natural mineral with exceptional physical characteristics resulting from its special crystal structure, mainstreamed into a large zeolite group called heulandites. An overall view of the research related to the synthesis, modification and application of synthetic clinoptilolite is presented. A single phase of clinoptilolite can be hydrothermally synthesized for 1-10 days in an autoclave from various silica, alumina, and alkali sources with initial Si/Al ratio from 3.0 to 5.0 at a temperature range from 120 to 195 °C. Crystallization rate and crystallinity of clinoptilolite can be improved by seeding. The modification of clinoptilolite has received noticeable attention from the research community, since modified forms have specific properties and therefore their area of application has been broadening. This paper provides a review of the use of organic compounds such as quarter alkyl ammonium, polymer, amine and inorganic species used in the modification process, discusses the processes and mechanisms of clinoptilolite modification, and identifies research gaps and new perspectives.
Zobrazit více v PubMed
Schuth F., Sing K.S.W., Weitkarnp J. Handbook of Porous Solids. Volume 2 Wiley-VCH Verlag GmbH; Weinheim, Germany: 2002.
Roth W.J., Nachtigall P., Morris R.E., Cejka J. Two-dimensional zeolites: Current status and perspectives. Chem. Rev. 2014;114:4807–4837. doi: 10.1021/cr400600f. PubMed DOI
Alberti A. The crystal structure of two clinoptilolites. Tschermaks Mineral. Petrogr. Mitt. 1975;22:25–37. doi: 10.1007/BF01081301. DOI
Baerlocher C., McCusker L.B., Olson D.H. Atlas of Zeolite Framework Types. Elsevier; Amsterdam, The Netherlands: 2007. pp. 157–158.
Armbruster T., Gunter M.E. Crystal structures of natural zeolites. Rev. Mineral. Geochem. 2001;45:1–67. doi: 10.2138/rmg.2001.45.1. DOI
Tsitsishvili G.V., Andronikashvli T.G., Kirov G.R., Filizova L.D. Natural Zeolites. Ellis Horwood; London, UK: 1992. pp. 40–52.
Kowalczyk P., Sprynskyy M., Terzyk A.P., Lebedynets M., Namieśnik J., Buszewski B. Porous structure of natural and modified clinoptilolites. J. Colloid Interface Sci. 2006;297:77–85. doi: 10.1016/j.jcis.2005.10.045. PubMed DOI
Grce M., Pavelić K. Antiviral properties of clinoptilolite. Microporous Mesoporous Mater. 2005;79:165–169. doi: 10.1016/j.micromeso.2004.10.039. DOI
Reháková M., Čuvanová S., Dzivák M., Rimár J., Gaval’ová Z. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 2004;8:397–404. doi: 10.1016/j.cossms.2005.04.004. DOI
Jovanovic M., Rajic N., Obradovic B. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite. J. Hazard. Mater. 2012;233–234:57–64. doi: 10.1016/j.jhazmat.2012.06.052. PubMed DOI
Zanin E., Scapinello J., de Oliveira M., Rambo C.L., Franscescon F., Freitas L., de Mello J.M.M., Fiori M.A., Oliveira J.V., Dal Magro J., et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf. Environ. Prot. 2017;105:194–200. doi: 10.1016/j.psep.2016.11.008. DOI
Qiu M., Qian C., Xu J., Wu J., Wang G. Studies on the adsorption of dyes into clinoptilolite. Desalination. 2009;243:286–292. doi: 10.1016/j.desal.2008.04.029. DOI
Ahmadi M., Haghighi M., Kahforoushan D. Influence of active phase composition (mn, ni, mnxni10−x) on catalytic properties and performance of clinoptilolite supported nanocatalysts synthesized using ultrasound energy toward abatement of toluene from polluted air. Process Saf. Environ. Prot. 2017;106:294–308. doi: 10.1016/j.psep.2016.06.029. DOI
Rodríguez-Fuentes G., Barrios M.A., Iraizoz A., Perdomo I., Cedré B. Enterex: Anti-diarrheic drug based on purified natural clinoptilolite. Zeolites. 1997;19:441–448. doi: 10.1016/S0144-2449(97)00087-0. DOI
Tomečková V., Reháková M., Mojžišová G., Magura J., Wadsten T., Zelenáková K. Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous Mesoporous Mater. 2012;147:59–67. doi: 10.1016/j.micromeso.2011.05.031. DOI
Cerri G., de’ Gennaro M., Bonferoni M.C., Caramella C. Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Appl. Clay Sci. 2004;27:141–150. doi: 10.1016/j.clay.2004.04.004. DOI
Alireza N.-E., Sanaz T.-G. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. Comptes Rendus Chim. 2014;17:49–61.
Ames L., Jr. Synthesis of a clinoptilolite-like zeolite. Am. Mineral. 1963;48:1374–1381.
Hawkins D.B. Zeolite studies i. Synthesis of some alkaline earth zeolites. Mater. Res. Bull. 1967;2:951–958. doi: 10.1016/0025-5408(67)90151-1. DOI
Goto Y. Synthesis of clinoptilolite. Am. Mineral. 1977;62:330–332.
Chi C.-H., Sand L. Synthesis of na-and k-clinoptilolite endmembers. Nature. 1983;304:255–257. doi: 10.1038/304255a0. DOI
Sanders R.N., Laurent S.M. Method of Making a Zeolite of the Clinoptilolite Type by Seeding. 4,623,529. U.S. Patent. 1986 Nov 18;
Satokawa S., Itabashi K. Clinoptilolite and Method for Synthesizing the Same. EP 0681991 A1. Patent. 1995 Nov 15;
Williams C.D. Synthesis of pure clinoptilolite without the use of seed crystals. Chem. Commun. 1997:2113–2114. doi: 10.1039/a705198k. DOI
Zhao D., Kevan L., Szostak R. Hydrothermal synthesis of alkali cation heulandite aluminosilicate molecular sieves. Zeolites. 1997;19:366–369. doi: 10.1016/S0144-2449(97)00134-6. DOI
Zhao D., Cleare K., Oliver C., Ingram C., Cook D., Szostak R., Kevan L. Characteristics of the synthetic heulandite-clinoptilolite family of zeolites. Microporous Mesoporous Mater. 1998;21:371–379. doi: 10.1016/S1387-1811(98)00131-0. DOI
Zhao D., Szostak R., Kevan L. Role of alkali-metal cations and seeds in the synthesis of silica-rich heulandite-type zeolites. J. Mater. Chem. 1998;8:233–239. doi: 10.1039/a705026g. DOI
Tanaka H., Yamasaki N., Muratani M., Hino R. Structure and formation process of (k, na)-clinoptilolite. Mater. Res. Bull. 2003;38:713–722. doi: 10.1016/S0025-5408(03)00006-0. DOI
Güvenir Ö., Kalıpçılar H., Çulfaz A. Crystallization field study for the formation of single phase sodium clinoptilolite: Batch composition, seed and temperature effects. Cryst. Res. Technol. 2009;44:293–299. doi: 10.1002/crat.200800358. DOI
Güvenir Ö., Kalıpçılar H., Çulfaz A. Crystallization field and rate study for the formation of single phase sodium-potassium and potassium clinoptilolite. Cryst. Res. Technol. 2011;46:345–350. doi: 10.1002/crat.201000513. DOI
Bhardwaj D., Sharma P., Sharma M., Tomar R. Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. J. Taiwan Inst. Chem. Eng. 2014;45:2649–2658. doi: 10.1016/j.jtice.2014.07.010. DOI
Bhardwaj D., Sharma M., Sharma P., Tomar R. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater. 2012;227–228:292–300. doi: 10.1016/j.jhazmat.2012.05.058. PubMed DOI
Haggerty G.M., Bowman R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994;28:452–458. doi: 10.1021/es00052a017. PubMed DOI
Sullivan E.J., Carey J.W., Bowman R.S. Thermodynamics of cationic surfactant sorption onto natural clinoptilolite. J. Colloid Interface Sci. 1998;206:369–380. doi: 10.1006/jcis.1998.5764. PubMed DOI
Li Z. Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite. Langmuir. 1999;15:6438–6445. doi: 10.1021/la981535x. DOI
Bowman R.S. Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater. 2003;61:43–56. doi: 10.1016/S1387-1811(03)00354-8. DOI
Ghiaci M., Kia R., Abbaspur A., Seyedeyn-Azad F. Adsorption of chromate by surfactant-modified zeolites and mcm-41 molecular sieve. Sep. Purif. Technol. 2004;40:285–295. doi: 10.1016/j.seppur.2004.03.009. DOI
Daković A., Tomasević-Canović M., Dondur V., Rottinghaus G.E., Medaković V., Zarić S. Adsorption of mycotoxins by organozeolites. Colloids Surf. B. 2005;46:20–25. PubMed
Benkli Y.E., Can M.F., Turan M., Çelik M.S. Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Res. 2005;39:487–493. doi: 10.1016/j.watres.2004.10.008. PubMed DOI
Wingenfelder U., Nowack B., Furrer G., Schulin R. Adsorption of pb and cd by amine-modified zeolite. Water Res. 2005;39:3287–3297. doi: 10.1016/j.watres.2005.05.017. PubMed DOI
Bansiwal A.K., Rayalu S.S., Labhasetwar N.K., Juwarkar A.A., Devotta S. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Agric. Food Chem. 2006;54:4773–4779. doi: 10.1021/jf060034b. PubMed DOI
Daković A., Tomašević-Čanović M., Rottinghaus G.E., Matijašević S., Sekulić Ž. Fumonisin b1 adsorption to octadecyldimethylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Microporous Mesoporous Mater. 2007;105:285–290.
Zeng Y., Woo H., Lee G., Park J. Adsorption of cr(vi) on hexadecylpyridinium bromide (hdpb) modified natural zeolites. Microporous Mesoporous Mater. 2010;130:83–91. doi: 10.1016/j.micromeso.2009.10.016. DOI
Malekian R., Abedi-Koupai J., Eslamian S.S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 2011;185:970–976. doi: 10.1016/j.jhazmat.2010.09.114. PubMed DOI
Danina K., Aleksandra D., Andjelija M., Ljiljana D., Milan K., Vladimir D., Jela M. An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient. Microporous Mesoporous Mater. 2013;167:94–101.
Nezamzadeh-Ejhieh A., Raja G. Modification of nanoclinoptilolite zeolite with hexadecyltrimethylammonium surfactant as an active ingredient of chromate-selective membrane electrode. J. Chem. 2013;2013:13. doi: 10.1155/2013/685290. DOI
Figueiredo H., Quintelas C. Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. J. Hazard. Mater. 2014;274:287–299. doi: 10.1016/j.jhazmat.2014.04.012. PubMed DOI
Guzel P., Aydın Y.A., Deveci Aksoy N. Removal of chromate from wastewater using amine-based-surfactant-modified clinoptilolite. Int. J. Environ. Sci. Technol. 2016;13:1277–1288. doi: 10.1007/s13762-016-0954-y. DOI
Milićević S., Matović L., Petrović Đ., Đukić A., Milošević V., Đokić D., Kumrić K. Surfactant modification and adsorption properties of clinoptilolite for the removal of pertechnetate from aqueous solutions. J. Radioanal. Nucl. Chem. 2016;310:805–815. doi: 10.1007/s10967-016-4850-1. DOI
Marković M., Daković A., Rottinghaus G.E., Kragović M., Petković A., Krajišnik D., Milić J., Mercurio M., de Gennaro B. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloids Surf. B. 2017;151:324–332. doi: 10.1016/j.colsurfb.2016.12.033. PubMed DOI
Faghihian H., Bowman R.S. Adsorption of chromate by clinoptilolite exchanged with various metal cations. Water Res. 2005;39:1099–1104. doi: 10.1016/j.watres.2004.12.010. PubMed DOI
Doušová B., Grygar T., Martaus A., Fuitová L., Koloušek D., Machovič V. Sorption of asv on aluminosilicates treated with feii nanoparticles. J. Colloid Interface Sci. 2006;302:424–431. doi: 10.1016/j.jcis.2006.06.054. PubMed DOI
Stanić T., Daković A., Živanović A., Tomašević-Čanović M., Dondur V., Milićević S. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environ. Chem. Lett. 2008;7:161. doi: 10.1007/s10311-008-0152-3. DOI
Jiménez-Cedillo M.J., Olguín M.T., Fall C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 2009;163:939–945. doi: 10.1016/j.jhazmat.2008.07.049. PubMed DOI
Camacho L.M., Parra R.R., Deng S. Arsenic removal from groundwater by mno2-modified natural clinoptilolite zeolite: Effects of ph and initial feed concentration. J. Hazard. Mater. 2011;189:286–293. doi: 10.1016/j.jhazmat.2011.02.035. PubMed DOI
Šiljeg M., Foglar L., Gudelj I. The removal of arsenic from water with natural and modified clinoptilolite. Chem. Ecol. 2012;28:75–87. doi: 10.1080/02757540.2011.619531. DOI
Guocheng L., Li Z., Jiang W.-T., Ackley C., Fenske N., Demarco N. Removal of cr(vi) from water using fe(ii)-modified natural zeolite. Chem. Eng. Res. Des. 2014;92:384–390.
Bogdanchikova N., Concepcion Rosabal B., Petranovskii V., Avalos-Borja M., Rodríguez-Fuentes G. 01-p-15-different silver states stabilized in natural clinoptilolites. In: Galarneau A., Fajula F., Renzo F.D., Vedrine J., editors. Studies in Surface Science and Catalysis. Volume 135. Elsevier; Amsterdam, The Netherlands: 2001. p. 243.
Concepción-Rosabal B., Rodríguez-Fuentes G., Bogdanchikova N., Bosch P., Avalos M., Lara V.H. Comparative study of natural and synthetic clinoptilolites containing silver in different states. Microporous Mesoporous Mater. 2005;86:249–255. doi: 10.1016/j.micromeso.2005.07.027. DOI
De la Rosa-Gómez I., Olguín M.T., Alcántara D. Antibacterial behavior of silver-modified clinoptilolite–heulandite rich tuff on coliform microorganisms from wastewater in a column system. J. Environ. Manag. 2008;88:853–863. doi: 10.1016/j.jenvman.2007.04.005. PubMed DOI
Copcia V.E., Luchian C., Dunca S., Bilba N., Hristodor C.M. Antibacterial activity of silver-modified natural clinoptilolite. J. Mater. Sci. 2011;46:7121–7128. doi: 10.1007/s10853-011-5635-0. DOI
Akhigbe L., Ouki S., Saroj D., Lim X.M. Silver-modified clinoptilolite for the removal of escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2014;21:10940–10948. doi: 10.1007/s11356-014-2888-6. PubMed DOI
Li Z., Bowman R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997;31:2407–2412. doi: 10.1021/es9610693. DOI
Tomašević-Čanović M., Daković A., Rottinghaus G., Matijašević S., Đuričić M. Surfactant modified zeolites-new efficient adsorbents for mycotoxins. Microporous Mesoporous Mater. 2003;61:173–180. doi: 10.1016/S1387-1811(03)00365-2. DOI
Nikashina V.A., Gembitskii P.A., Kats E.M., Boksha L.F., Galuzinskaya A.K. Organomineral sorbents based on clinoptilolite-containing tuffs. Russ. Chem. Bull. 1994;43:1462–1465. doi: 10.1007/BF00697126. DOI
Nikashina V.A., Myasoedov B.F. Natural Microporous Materials in Environmental Technology. Volume 362. Springer; Amsterdam, The Netherlands: 1999. Environmental applications of modified natural zeolites; pp. 335–343.
Minchev K., Penchev V., Kozova L., Buyukliiska E. Use of thermal analysis to study the modification of natural clinoptilolite by amines. Bull. Acad. Sci. USSR Div. Chem. Sci. 1982;31:1308–1311. doi: 10.1007/BF00954141. DOI
Boyd S.A., Lee J.-F., Mortland M.M. Attenuating organic contaminant mobility by soil modification. Nature. 1988;333:345–347. doi: 10.1038/333345a0. DOI
Matijasevic S., Dakovic A., Tomasevic-Canovic M., Stojanovic M., Iles D. Uranium(vi) adsorption on surfactant modified heulandite/clinoptilolite rich tuff. J. Serbian Chem. Soc. 2006;71:1323–1331. doi: 10.2298/JSC0612323M. DOI
Misaelides P., Nikashina V., Godelitsas A., Gembitskii P., Kats E. Sorption of as (v)-anions from aqueous solutions by organo-modified natural zeolitic materials. J. Radioanal. Nucl. Chem. 1998;227:183–186. doi: 10.1007/BF02386458. DOI
Zaremotlagh S., Hezarkhani A. Removal of textile dyes from aqueous solution by conducting polymer modified clinoptilolite. Environ. Earth Sci. 2014;71:2999–3006. doi: 10.1007/s12665-013-2676-5. DOI
Zhao Y., Zhao X., Deng J., He C. Utilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: Kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 2016;308:701–709. doi: 10.1007/s10967-015-4475-9. DOI
Olad A., Ahmadi S., Rashidzadeh A. Removal of nickel (II) from aqueous solutions with polypyrrole modified clinoptilolite: Kinetic and isotherm studies. Desalination Water Treat. 2013;51:7172–7180. doi: 10.1080/19443994.2013.771285. DOI
Xu Y.H., Ohki A., Maeda S. Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicol. Environ. Chem. 2000;76:111–124. doi: 10.1080/02772240009358921. DOI
Samatya S., Yüksel Ü., Yüksel M., Kabay N. Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite. Sep. Sci. Technol. 2007;42:2033–2047. doi: 10.1080/01496390701310421. DOI
Guaya D., Valderrama C., Farran A., Armijos C., Cortina J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015;271:204–213. doi: 10.1016/j.cej.2015.03.003. DOI
Nikazara M., Gholivand K., Mahanpoor K. Using TiO2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinet. Catal. 2007;48:214–220. doi: 10.1134/S002315840702005X. DOI
Nikazar M., Gholivand K., Mahanpoor K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination. 2008;219:293–300. doi: 10.1016/j.desal.2007.02.035. DOI
Trujillo M.E., Hirales D., Rincón M.E., Hinojosa J.F., Leyva G.L., Castillón F.F. TiO2/clinoptilolite composites for photocatalytic degradation of anionic and cationic contaminants. J. Mater. Sci. 2013;48:6778–6785. doi: 10.1007/s10853-013-7482-7. DOI
Nezamzadeh-Ejhieh A., Amiri M. Cuo supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol. 2013;235:279–288. doi: 10.1016/j.powtec.2012.10.017. DOI
Akbari Sene R., Moradi G.R., Sharifnia S. Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods. Ultrason. Sonochem. 2017;37:490–501. doi: 10.1016/j.ultsonch.2017.02.006. PubMed DOI
Yener H.B., Yılmaz M., Deliismail Ö., Özkan S.F., Helvacı Ş.Ş. Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Sep. Purif. Technol. 2017;173:17–26. doi: 10.1016/j.seppur.2016.09.010. DOI