Host association and selection on salivary protein genes in bed bugs and related blood-feeding ectoparasites
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28680688
PubMed Central
PMC5493930
DOI
10.1098/rsos.170446
PII: rsos170446
Knihovny.cz E-zdroje
- Klíčová slova
- apyrase, candidate genes, coagulation, nitrophorin, phylogenetics,
- Publikační typ
- časopisecké články MeSH
Reciprocal selective pressures can drive coevolutionary changes in parasites and hosts, and result in parasites that are highly specialized to their hosts. Selection and host co-adaptation are better understood in endoparasites than in ectoparasites, whose life cycles may be more loosely linked to that of their hosts. Blood-feeding ectoparasites use salivary proteins to prevent haemostasis in the host, and maximize energy intake. Here we looked for signals of selection in salivary protein genes of ectoparasite species from a single genus (Cimex) that associate with a range of hosts including mammals (bats and humans) and birds (swallows). We analysed two genes that code for salivary proteins that inhibit platelet aggregation and vasoconstriction and may directly affect the efficiency of blood feeding in these species. Significant positive selection was detected at five codons in one gene in all bat-associated species groups. Our results suggest association with bats, versus humans or swallows, has posed a selective pressure on the salivary apyrase gene in species of Cimex.
Zobrazit více v PubMed
Vermeij GJ. 1987. Evolution and escalation: an ecological history of life. Princeton, NJ: Princeton University Press.
Hall AR, Scanlan PD, Morgan AD, Buckling A. 2011. Host-parasite coevolutionary arms races give way to fluctuating selection: bacteria-phage coevolutionary dynamics. Ecol. Lett. 14, 635–642. (doi:10.1111/j.1461-0248.2011.01624.x) PubMed DOI
Pinheiro A, Woof JM, Abi-Rached L, Parham P, Esteves PJ. 2013. Computational analyses of an evolutionary arms race between mammalian immunity mediated by immunoglobulin A and its subversion by bacterial pathogens. PLoS ONE 8, e73934 (doi:10.1371/journal.pone.0073934) PubMed DOI PMC
Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, Paten B, Salama SR, Haussler D. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245. (doi:10.1038/nature13760) PubMed DOI PMC
Paterson S, et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278. (doi:10.1038/nature08798) PubMed DOI PMC
Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L. 2007. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873. (doi:10.1038/nature06291) PubMed DOI
Balashov YS. 2006. Types of parasitism of acarines and insects on terrestrial vertebrates. Entomol. Rev. 86, 957–971. (doi:10.1134/S0013873806080112) DOI
Balashov YS. 2011. Parasitism and ecological parasitology. Entomol. Rev. 91, 1216–1223. (doi:10.1134/S001387381109017X) PubMed DOI
Leggett HC, Buckling A, Long GH, Boots M. 2013. Generalism and the evolution of parasite virulence. Trends Ecol. Evol. 28, 592–596. (doi:10.1016/j.tree.2013.07.002) PubMed DOI
Sponchiado J, Melo GL, Landulfo GA, Jacinavicius FC, Barros-Battesti DM, Cáceres NC. 2015. Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil. Exp. Appl. Acarol. 66, 369–381. (doi:10.1007/s10493-015-9917-0) PubMed DOI
Dick CW, Patterson BD. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37, 871–876. (doi:10.1016/j.ijpara.2007.02.004) PubMed DOI
Abrams AJ, Cannatella DC, Hillis DM, Sawyer SL. 2013. Recent host-shifts in ranaviruses: signatures of positive selection in the viral genome. J. Gen. Virol. 94, 2082–2093. (doi:10.1099/vir.0.052837-0) PubMed DOI PMC
Mahamdallie SS, Ready PD. 2012. No recent adaptive selection on the apyrase of Mediterranean Phlebotomus: implications for using salivary peptides to vaccinate against canine leishmaniasis: adaptive evolution of sandfly apyrase. Evol. Appl. 5, 293–305. (doi:10.1111/j.1752-4571.2011.00226.x) PubMed DOI PMC
Mans BJ, Louw AI, Neitz AWH. 2002. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 19, 1695–1705. (doi:10.1093/oxfordjournals.molbev.a003992) PubMed DOI
Arcà B, Struchiner CJ, Pham VM, Sferra G, Lombardo F, Pombi M, Ribeiro JMC. 2014. Positive selection drives accelerated evolution of mosquito salivary genes associated with blood-feeding. Insect Mol. Biol. 23, 122–131. (doi:10.1111/imb.12068) PubMed DOI PMC
Usinger RL. 1966. Monograph of Cimicidae (Hemiptera, Heteroptera). Annapolis, MD: Entomological Society of America.
Goddard J. 2009. Bed bugs (Cimex lectularius) and clinical consequences of their bites. J. Am. Med. Assoc. 301, 1358–1366. (doi:10.1001/jama.2009.405) PubMed DOI
Criado PR, Belda W Jr, Criado RFJ, Vasconcelos e Silva R, Vasconcellos C. 2011. Bedbugs (Cimicidae infestation): the worldwide renaissance of an old partner of human kind. Braz. J. Infect. Dis. 15, 74–80. (doi:10.1016/S1413-8670(11)70144-1) PubMed DOI
Benoit J. 2011. Stress tolerance of bed bugs: a review of factors that cause trauma to Cimex lectularius and C. hemipterus. Insects 2, 151–172. (doi:10.3390/insects2020151) PubMed DOI PMC
Balvín O, Roth S, Vilímová J. 2015. Molecular evidence places the swallow bug genus Oeciacus Stål within the bat and bed bug genus Cimex Linnaeus (Heteroptera: Cimicidae). Syst. Entomol. 40, 652–665. (doi:10.1111/syen.12127) DOI
Valenzuela JG, Chuffe OM, Ribeiro JC. 1996. Apyrase and anti-platelet activities from the salivary glands of the bed bug Cimex lectularius. Insect Biochem. Mol. Biol. 26, 557–562. (doi:10.1016/S0965-1748(96)00041-0) DOI
Valenzuela JG, Ribeiro JM. 1998. Purification and cloning of the salivary nitrophorin from the hemipteran Cimex lectularius. J. Exp. Biol. 201, 2659–2664. PubMed
Francischetti IMB, Calvo E, Andersen JF, Pham VM, Favreau AJ, Barbian KD, Romero A, Valenzuela JG, Ribeiro JMC. 2010. Insight into the sialome of the bed bug, Cimex lectularius. J. Proteome Res. 9, 3820–3831. (doi:10.1021/pr1000169) PubMed DOI PMC
Talbot B, Vonhof MJ, Broders HG, Fenton B, Keyghobadi N. 2016. Range-wide genetic structure and demographic history in the bat ectoparasite Cimex adjunctus. BMC Evol. Biol. 16, 268 (doi:10.1186/s12862-016-0839-1) PubMed DOI PMC
Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321. (doi:10.1098/rspb.2002.2218) PubMed DOI PMC
Balvín O, Munclinger P, Kratochvíl L, Vilímová J. 2012. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 111, 457–469. (doi:10.1007/s00436-012-2862-5) PubMed DOI
Dai J, Liu J, Deng Y, Smith TM, Lu M. 2004. Structure and protein design of a human platelet function inhibitor. Cell 116, 649–659. (doi:10.1016/S0092-8674(04)00172-2) PubMed DOI
Weichsel A, Maes EM, Andersen JF, Valenzuela JG, Shokhireva TK, Walker FA, Montfort WR. 2005. Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proc. Natl Acad. Sci. USA 102, 594–599. (doi:10.1073/pnas.0406549102) PubMed DOI PMC
Berman HM. 2000. The Protein Data Bank. Nucleic Acids Res. 28, 235–242. (doi:10.1093/nar/28.1.235) PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. (doi:10.1093/molbev/mst197) PubMed DOI PMC
Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580. (doi:10.1093/molbev/msp274) PubMed DOI PMC
Pond SLK, Frost SDW, Muse SV. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679. (doi:10.1093/bioinformatics/bti079) PubMed DOI
Heled J, Bouckaert R, Xie W, Drummond AJ. 2013. *BEAST in BEAST 2.2.x: estimating species trees from multilocus data. GitHub. See http://beast2-dev.github.io/beast-docs/beast2/STARBEAST/StarBEAST_tutorial.html (accessed on 10 November 2016).
Brown RP, Yang Z. 2011. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (doi:10.1186/1471-2148-11-271) PubMed DOI PMC
Heled J, Bouckaert RR. 2013. Looking for trees in the forest: summary tree from posterior samples. BMC Evol. Biol. 13, 221 (doi:10.1186/1471-2148-13-221) PubMed DOI PMC
Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW. 2006. GARD: a genetic algorithm for recombination detection. Bioinformatics 22, 3096–3098. (doi:10.1093/bioinformatics/btl474) PubMed DOI
Scheffler K, Martin DP, Seoighe C. 2006. Robust inference of positive selection from recombining coding sequences. Bioinformatics 22, 2493–2499. (doi:10.1093/bioinformatics/btl427) PubMed DOI
Pond SLK, Frost SDW. 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222. (doi:10.1093/molbev/msi105) PubMed DOI
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (doi:10.1371/journal.pgen.1002764) PubMed DOI PMC
R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://www.R-project.org/)
Purvis A, Rambaut A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Bioinformatics 11, 247–251. (doi:10.1093/bioinformatics/11.3.247) PubMed DOI
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. (doi:10.1093/bioinformatics/btg412) PubMed DOI
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376. (doi:10.1007/BF01734359) PubMed DOI
Stawski C, Willis CKR, Geiser F. 2014. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100. (doi:10.1111/jzo.12105) DOI
Schmidt RF, Thews G. 1989. Human physiology. Berlin, Germany: Springer.
Møller AP. 2010. Body temperature and fever in a free-living bird. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 156, 68–74. (doi:10.1016/j.cbpb.2010.02.006) PubMed DOI
DeVries ZC, Mick R, Schal C. 2016. Feel the heat: activation, orientation and feeding responses of bed bugs to targets at different temperatures. J. Exp. Biol. 219, 3773–3780. (doi:10.1242/jeb.143487) PubMed DOI PMC
Neuweiler G. 2000. The biology of bats. New York, NY: Oxford University Press.
Saino N, Cuervo JJ, Ninni P, De Lope F, Moller AP. 1997. Haematocrit correlates with tail ornament size in three populations of the barn swallow (Hirundo rustica). Funct. Ecol. 11, 604–610. (doi:10.1046/j.1365-2435.1997.00131.x) DOI
Romero A, Schal C. 2014. Blood constituents as phagostimulants for the bed bug Cimex lectularius L. J. Exp. Biol. 217, 552–557. (doi:10.1242/jeb.096727) PubMed DOI
Booth W, Balvín O, Vargo EL, Vilímová J, Schal C. 2015. Host association drives genetic divergence in the bed bug, Cimex lectularius. Mol. Ecol. 24, 980–992. (doi:10.1111/mec.13086) PubMed DOI
Mollentze N, Biek R, Streicker DG. 2014. The role of viral evolution in rabies host shifts and emergence. Curr. Opin. Virol. 8, 68–72. (doi:10.1016/j.coviro.2014.07.004) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.3797071