A novel upward-looking hydroacoustic method for improving pelagic fish surveys
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28684758
PubMed Central
PMC5500586
DOI
10.1038/s41598-017-04953-6
PII: 10.1038/s41598-017-04953-6
Knihovny.cz E-zdroje
- MeSH
- akustika přístrojové vybavení MeSH
- jezera MeSH
- měniče MeSH
- populační dynamika MeSH
- průzkumy a dotazníky MeSH
- roční období MeSH
- rozšíření zvířat fyziologie MeSH
- rybářství statistika a číselné údaje MeSH
- ryby fyziologie MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
For ethical reasons and animal welfare, it is becoming increasingly more important to carry out ecological surveys with a non-invasive approach. Information about fish distribution and abundance in the upper water column is often fundamental. However, this information is extremely hard to obtain using classical hydroacoustic methods. We developed a rigid frame system for pushing upward looking transducers of the scientific echo sounder (38 and 120 kHz) in front of the research vessel. The efficiency of the new approach for monitoring juvenile fish at night was investigated by comparing the results with a quantitative fry trawl in the Římov Reservoir in the Czech Republic. The experimental setup enabled comparisons for the 0-3 m and 3-6 m depth layers, which are utilized by almost all juvenile fish in summer. No statistically significant differences in the estimated abundance of juveniles were found between the two sampling methods. The comparison of abundance estimates gathered by the two frequencies were also not significantly different. The predicted mean lengths from acoustic sampling and the trawl catches differed by less than 10 mm in all comparisons. Results suggest that mobile hydroacoustic upward-looking systems can fill the methodological gap in non-invasive surveying of surface fishes.
Department of Limnology University of Ruhuna Wellamadama Matara Sri Lanka
Department of Physics University of Oslo Oslo Norway
Faculty of Economics University of South Bohemia České Budějovice Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Fisheries and Oceans Canada Gulf Fisheries Centre Moncton Canada
Zobrazit více v PubMed
Kalff, J. Limnology: Inland water ecosystems. (Prentice Hall, 2002).
Obrador B, Staehr PA, Christensen JPC. Vertical patterns of metabolism in three contrasting stratified lakes. Limnol. Oceanogr. 2014;59:1228–1240. doi: 10.4319/lo.2014.59.4.1228. DOI
Staehr PA, Christensen JPA, Batt R, Read J. Ecosystem metabolism in a stratified lake. Limnol. Oceanogr. 2012;57:1317–1330. doi: 10.4319/lo.2012.57.5.1317. DOI
Prchalová M, et al. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecol. Freshw. Fish. 2009;18:247–260. doi: 10.1111/j.1600-0633.2008.00342.x. DOI
Bohl E. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia. 1979;44:368–375. doi: 10.1007/BF00545241. PubMed DOI
Yule DL, Evrard LM, Cachera S, Colon M, Guillard J. Comparing two fish sampling standards over time: largely congruent results but with caveats. Freshw. Biol. 2013;58:2074–2088. doi: 10.1111/fwb.12192. DOI
György, Á. I., Tátrai, I. & Specziár, A. Relationship between horizontal hydroacoustic stock estimates and gillnet catches of surface-oriented fish in shallow Lake Balaton (Hungary). Knowl. Manag. Aquat. Ecosyst. 6 (2012).
Brabrand Å, Faafeng B. Habitat shift in roach (Rutilus rutilus) induced by pikeperch (Stizostedion lucioperca) introduction: predation risk versus pelagic behaviour. Oecologia. 1993;95:38–46. doi: 10.1007/BF00649504. PubMed DOI
Gliwicz MZ, Jachner A. Diel migrations of juvenile fish: a ghost of predation past or present? Hydrobiologia. 1992;124:385–410.
Goldspink CR. The distribution and abundance of young (I+ & II+) perch, Perca fluviatilis L., in a deep eutrophic lake, England. J. Fish Biol. 1990;36:439–447. doi: 10.1111/j.1095-8649.1990.tb05623.x. DOI
Eckmann, R. Abundance and horizontal distribution of Lake Constance pelagic whitefish (Coregonus lavaretus L.) during winter. 249–259 (2007).
Jensen OP, Hrabik TR, Martell SJD, Walters CJ, Kitchell JF. Diel vertical migration in the Lake Superior pelagic community. II. Modeling trade-offs at an intermediate trophic level. 2006;2307:2296–2307.
Quinn TP, Sergeant CJ, Beaudreau AH, Beauchamp D. a. Spatial and temporal patterns of vertical distribution for three planktivorous fishes in Lake Washington. Ecol. Freshw. Fish. 2012;21:337–348. doi: 10.1111/j.1600-0633.2012.00554.x. DOI
Rechencq M, Sosnovsky A, Macchi PJ, Alvear PA, Vigliano PH. Extensive diel fish migrations in a deep ultraoligotrophic lake of Patagonia Argentina. Hydrobiologia. 2010;658:147–161. doi: 10.1007/s10750-010-0458-6. DOI
Prchalová M, et al. Acoustic study of fish and invertebrate behavior in a tropical reservoir. in. Aquatic Living Resources. 2003;16:325–331. doi: 10.1016/S0990-7440(03)00047-0. DOI
Piet, G. J. & Guruge, W. A. H. P. Diel variation in feeding and vertical distribution of ten co-occurring fish species: consequences for resource partitioning. 293–307 (1997).
Chambers, R. C. & Trippel, E. A. Early life history and recruitment in fish populations. (Chapman & Hall, London, 1997).
Řiha M, et al. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia. 2015;747:111–131. doi: 10.1007/s10750-014-2124-x. DOI
Jůza T, et al. Pelagic underyearling communities in a canyon-shaped reservoir in late summer. J. Limnol. 2009;68:304–314. doi: 10.4081/jlimnol.2009.304. DOI
Masson S, Angeli N, Guillard J, Pinel-Alloul B. Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: an approach based on high frequency sampling. J. Plankton Res. 2001;23:1041–1060. doi: 10.1093/plankt/23.10.1041. DOI
Achleitner D, Gassner H, Luger M. Comparison of three standardised fish sampling methods in 14 alpine lakes in Austria. Fish. Manag. Ecol. 2012;19:352–361. doi: 10.1111/j.1365-2400.2012.00851.x. DOI
Jůza T, Kubečka J. The efficiency of three fry trawls for sampling the freshwater pelagic fry community. Fish. Res. 2007;85:285–290. doi: 10.1016/j.fishres.2007.03.001. DOI
Simmonds, E. J. & MacLennan, D. N. Fisheries Acoustics. (Blackwell Publishing Ltd, 2005).
Tarbox K, Thorne R. Assessment of adult salmon in near-surface waters of Cook Inlet, Alaska. ICES J. Mar. Sci. 1996;53:397–401. doi: 10.1006/jmsc.1996.0055. DOI
Kubečka J, Wittingerová M. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish. Res. 1998;35:99–106. doi: 10.1016/S0165-7836(98)00064-2. DOI
Frouzová J, Kubečka J, Balk H, Frouz J. Target strength of some European fish species and its dependence on fish body parameters. Fish. Res. 2005;75:86–96. doi: 10.1016/j.fishres.2005.04.011. DOI
Rudstam LG, et al. Application of in situ target-strength estimations in lakes: Examples from rainbow-smelt surveys in Lakes Erie and Champlain. ICES J. Mar. Sci. 2003;60:500–507. doi: 10.1016/S1054-3139(03)00046-8. DOI
Tušer M, Kubečka J, Frouzová J, Jarolím O. Fish orientation along the longitudinal profile of the Římov reservoir during daytime: Consequences for horizontal acoustic surveys. Fish. Res. 2009;96:23–29. doi: 10.1016/j.fishres.2008.09.022. DOI
Trevorrow MV. An evaluation of a steerable sidescan sonar for surveys of near-surface fish. Fish. Res. 2001;50:221–234. doi: 10.1016/S0165-7836(00)00214-9. DOI
Balk H, et al. Surface-induced errors in target strength and position estimates during horizontal acoustic surveys. Fish. Res. 2017;188:149–156. doi: 10.1016/j.fishres.2016.12.017. DOI
Čech M, Kubečka J. Sinusoidal cycling swimming pattern of reservoir fishes. J. Fish Biol. 2002;61:456–471. doi: 10.1111/j.1095-8649.2002.tb01577.x. DOI
Jarolím O, et al. Sinusoidal swimming in fishes: the role of season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation. Hydrobiologia. 2010;654:253–265. doi: 10.1007/s10750-010-0398-1. DOI
Arrhenius F, Benneheij BJAM, Rudstam LG, Boisclair D. Can stationary bottom split-beam hydroacoustics be used to measure fish swimming speed in situ? Fish. Res. 2000;45:31–41. doi: 10.1016/S0165-7836(99)00102-2. DOI
Probst WN, Thomas G, Eckmann R. Hydroacoustic observations of surface shoaling behaviour of young-of-the-year perch Perca fluviatilis (Linnaeus, 1758) with a towed upward-facing transducer. Fish. Res. 2009;96:133–138. doi: 10.1016/j.fishres.2008.10.009. DOI
Scalabrin C, Marfia C, Boucher J. How much fish is hidden in the surface and bottom acoustic blind zones? ICES J. Mar. Sci. 2009;66:1355–1363. doi: 10.1093/icesjms/fsp136. DOI
Horne, J. K. & Clay, C. S. Sonar systems and aquatic organisms: matching equipment and model parameters. Can. J. Fish. Aquat. Sci. (1998).
Urick, R. J. Principles of underwater sound. 3rd ed. (1983).
Medwin, H., Clay, C. S. & Stanton, T. K. Fundamentals of Acoustical Oceanography. The Journal of the Acoustical Society of America105 (1999).
Love RH. Target strength of an individual fish at any aspect. J. Acoust. Soc. Am. 1977;62:1397. doi: 10.1121/1.381672. DOI
Mason DM, et al. Hydroacoustic estimates of abundance and spatial distribution of pelagic prey fishes in Western Lake Superior. J. Great Lakes Res. 2005;31:426–438. doi: 10.1016/S0380-1330(05)70274-4. DOI
Emmrich M, Helland IP, Busch S, Schiller S, Mehner T. Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fish. Res. 2010;105:178–186. doi: 10.1016/j.fishres.2010.05.001. DOI
Jůza T, et al. The vertical distribution of fish in the open water area of a deep temperate mesotrophic lake assessed by hydroacoustics and midwater trawling. Int. Rev. Hydrobiol. 2012;97:509–525. doi: 10.1002/iroh.201101440. DOI
Frouzová J, Kubečka J. Changes of acoustic target strength during juvenile perch development. Fish. Res. 2004;66:355–361. doi: 10.1016/S0165-7836(03)00182-6. DOI
Kocovsky PM, et al. Sensitivity of fish density estimates to standard analytical procedures applied to Great Lakes hydroacoustic data. J. Great Lakes Res. 2013;39:655–662. doi: 10.1016/j.jglr.2013.09.002. DOI
Sawada K, Furusawa M, Williamson NJ. Conditions for the precise measurement of fish target strength in situ. J. Mar. Acoust. Soc. Japan. 1993;20:15–21. doi: 10.3135/jmasj.20.73. DOI
Čech M, Kubečka J. Ontogenetic changes in the bathypelagic distribution of European perch fry Perca fluviatilis monitored by hydroacoustic methods. Biologia (Bratisl). 2006;61:211–219.
Draštík V, Kubečka J. Fish avoidance of acoustic survey boat in shallow waters. Fish. Res. 2005;72:219–228. doi: 10.1016/j.fishres.2004.10.017. DOI
Godlewska M, Długoszewski B, Doroszczyk L. Day/night effects of passing boat on fish distribution in the shallow Malta reservoir. Hydroacoustics. 2008;12:61–68.
Ona, E. et al. Silent research vessels are not quiet. J. Acoust. Soc. Am. (2007). PubMed
Říha M, et al. Long-term development of fish populations in the Římov Reservoir. Fish. Manag. Ecol. 2009;16:121–129. doi: 10.1111/j.1365-2400.2008.00650.x. DOI
Kubečka, J., Tušer, M. & Komárek, V. An equipment for a distant monitoring of aquatic animals. CZ Pat. No. 305610 (2015).
Knudsen FR, Larsson P, Jakobsen PJ. Acoustic scattering from a larval insect (Chaoborus flavicans) at six echosounder frequencies: Implication for acoustic estimates of fish abundance. Fish. Res. 2006;79:84–89. doi: 10.1016/j.fishres.2005.11.024. DOI
Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N. & Simmonds, E. J. Calibration of acoustic instruments for fish density estimation: a practical guide. 81 (1987).
CEN. Water quality – Guidance on the estimation of fish abundance with mobile hydroacoustic methods (English version EN 15910:2014). Brussels: European Committee for Standartization. (2014).
Koblickaya, A. F. Key for identifying young freshwater fishes (in Russian). (Food Industry Publishing House, 1981).
Taskinen S, Warton DI. Robust tests for one or more allometric lines. J. Theor. Biol. 2013;333:38–46. doi: 10.1016/j.jtbi.2013.05.010. PubMed DOI
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria. (2015).