MicroRNAs as outcome predictors in patients with metastatic colorectal cancer treated with bevacizumab in combination with FOLFOX

. 2017 Jul ; 14 (1) : 743-750. [epub] 20170526

Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28693229

Bevacizumab is a humanized anti-vascular endothelial growth factor monoclonal antibody, used in combination with a oxaliplatin-based chemotherapy in the treatment of metastatic colorectal cancer (mCRC). The aim of the present study was to identify microRNA (miRNA)-based predictive biomarkers of therapy response in order to avoid unnecessary and costly therapy to non-responding patients. High-throughput miRNA microarray profiling (Affymetrix miRNA array) was performed on a discovery cohort of patients with mCRC. The discovery cohort was (n=20) divided into either responding (n=10) or non-responding (n=10) groups of bevacizumab/5-flourouracil, leucovorin, oxaliplatin (FOLFOX) treatment according to Response Evaluation Criteria in Solid Tumors criteria. Validation of candidate miRNAs was performed on an independent cohort of 41 patients with mCRC using quantitative reverse transcription polymerase chain reaction. Normalized data were subjected to receiver operating characteristic and Kaplan-Meier analyses. In total, 67 miRNAs were identified to be differentially expressed when miRNA expression was compared between responding and non-responding patients to bevacizumab/FOLFOX treatment (P<0.05). A total of 7 miRNAs were chosen for independent validation, which confirmed significantly higher expression of miR-92b-3p, miR-3156-5p, miR-10a-5p and miR-125a-5p (P<0.005) in tumor tissue of responding patients compared with non-reponding patients. Using the combination of miRNAs, the present study identified responders to the therapy with sensitivity 82% and specificity 64% (area under the curve = 0.8015). In conclusion, 4 predictive miRNAs associated with progression-free survival (PFS) were identified in patients with mCRC treated with bevacizumab/FOLFOX. Following further independent validations, detection of these miRNA may enable identification of patients with mCRC who may potentially benefit from the therapy.

Zobrazit více v PubMed

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Can. 2014;136:E359–E386. doi: 10.1002/ijc.29210. PubMed DOI

van Cutsem E, Nordlinger B, A; ESMO Cervantes, Guidelines Working Group Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann Oncol. 2010;21(Suppl 5):v93–v97. doi: 10.1093/annonc/mdq222. PubMed DOI

Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J Clin Oncol. 2008;26:2013–2019. doi: 10.1200/JCO.2007.14.9930. PubMed DOI

Bennouna J, Sastre J, Arnold D, Österlund P, Greil R, van Cutsem E, von Moos R, Viéitez JM, Bouché O, Borg C, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): A randomised phase 3 trial. Lancet Oncol. 2013;14:29–37. doi: 10.1016/S1470-2045(12)70477-1. PubMed DOI

Hurwitz HI, Tebbutt NC, Kabbinavar F, Giantonio BJ, Guan ZZ, Mitchell L, Waterkamp D, Tabernero J. Efficacy and safety of bevacizumab in metastatic colorectal cancer: Pooled analysis from seven randomized controlled trials. Oncologist. 2013;18:1004–1012. doi: 10.1634/theoncologist.2013-0107. PubMed DOI PMC

Pai SG, Fuloria J. Novel therapeutic agents in the treatment of metastatic colorectal cancer. World J Gastrointest Oncol. 2016;8:99–104. doi: 10.4251/wjgo.v8.i1.99. PubMed DOI PMC

Spiliopoulou P, Arkenau HT. Rationally designed treatment for metastatic colorectal cancer: Current drug development strategies. World J Gastroenterol. 2014;20:10288–10295. doi: 10.3748/wjg.v20.i30.10288. PubMed DOI PMC

Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics. 2016;107:59–68. doi: 10.1016/j.ygeno.2016.01.005. PubMed DOI

Vychytilova-Faltejskova P, Radova L, Sachlova M, Kosarova Z, Slaba K, Fabian P, Grolich T, Prochazka V, Kala Z, Svoboda M, et al. Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer. Carcinogenesis. 2016;37:941–950. doi: 10.1093/carcin/bgw078. PubMed DOI

Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics. Biomark Res. 2014;2:19. doi: 10.1186/2050-7771-2-19. PubMed DOI PMC

Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget. 2016;7:6476–6505. PubMed PMC

Boisen MK, Dehlendorff C, Linnemann D, Nielsen BS, Larsen JS, Osterlind K, Nielsen SE, Tarpgaard LS, Qvortrup C, Pfeiffer P, et al. Tissue microRNAs as predictors of outcome in patients with metastatic colorectal cancer treated with first line capecitabine and oxaliplatin with or without bevacizumab. PLoS One. 2014;15:e109430. doi: 10.1371/journal.pone.0109430. PubMed DOI PMC

Hansen TF, Carlsen AL, Heegaard NH, Sørensen FB, Jakobsen A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br J Cancer. 2015;112:624–629. doi: 10.1038/bjc.2014.652. PubMed DOI PMC

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026. PubMed DOI

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC

R Development Core Team, corp-author. R: a language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: [Mar 31;2015 ].

Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer; New York, NY: 2005. pp. 397–420. DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vandesompele J, De Preter K, Pattyn F, Poppe B, van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. RESEARCH0034. PubMed DOI PMC

Schee K, Lorenz S, Worren MM, Günther CC, Holden M, Hovig E, Fodstad O, Meza-Zepeda LA, Flatmark K. Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One. 2013;8:e66165. doi: 10.1371/journal.pone.0066165. PubMed DOI PMC

Segersten U, Spector Y, Goren Y, Tabak S, Malmström PU. The role of microRNA profiling in prognosticating progression in Ta and T1 urinary bladder cancer. Urol Oncol. 2014;32:613–618. doi: 10.1016/j.urolonc.2013.11.001. PubMed DOI

Zhi Y, Xie X, Wang R, Wang B, Gu W, Ling Y, Dong W, Zhi F, Liu Y. Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int J Hematol. 2015;102:296–303. doi: 10.1007/s12185-015-1829-6. PubMed DOI

Benson EA, Skaar TC, Liu Y, Nephew KP, Matei D. Carboplatin with decitabine therapy, in recurrent platinum resistant ovarian cancer, alters circulating mirnas concentrations: A pilot study. PLoS One. 2015;10:e0141279. doi: 10.1371/journal.pone.0141279. PubMed DOI PMC

Gattolliat CH, Uguen A, Pesson M, Trillet K, Simon B, Doucet L, Robaszkiewicz M, Corcos L. MicroRNA and targeted mRNA expression profiling analysis in human colorectal adenomas and adenocarcinomas. Eur J Cancer. 2015;51:409–420. doi: 10.1016/j.ejca.2014.12.007. PubMed DOI

Ozcan O, Kara M, Yumrutas O, Bozgeyik E, Bozgeyik I, Celik OI. MTUS1 and its targeting miRNAs in colorectal carcinoma: Significant associations. Tumour Biol. 2015;37:6637–6645. doi: 10.1007/s13277-015-4550-4. PubMed DOI

Xu Y, Huang Z, Liu Y. Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Mol Med Rep. 2014;10:2601–2608. PubMed

Ferracin M, Lupini L, Salamon I, Saccenti E, Zanzi MV, Rocchi A, da Ros L, Zagatti B, Musa G, Bassi C, et al. Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget. 2015;6:14545–14555. doi: 10.18632/oncotarget.3859. PubMed DOI PMC

Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015;3:83–92. doi: 10.2147/HP.S93413. PubMed DOI PMC

Agrawal R, Pandey P, Jha P, Dwivedi V, Sarkar C, Kulshreshtha R. Hypoxic signature of microRNAs in glioblastoma: Insights from small RNA deep sequencing. BMC Genomics. 2014;15:686. doi: 10.1186/1471-2164-15-686. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...