Radiofrequency and microwave interactions between biomolecular systems
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
26174548
PubMed Central
PMC4713408
DOI
10.1007/s10867-015-9392-1
PII: 10.1007/s10867-015-9392-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bioelectrodynamics, Biomolecules, Cell signaling, Electromagnetic field, Microwaves, Radiofrequency,
- MeSH
- makromolekulární látky metabolismus MeSH
- mikrovlny * MeSH
- radiobiologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- makromolekulární látky MeSH
The knowledge of mechanisms underlying interactions between biological systems, be they biomacromolecules or living cells, is crucial for understanding physiology, as well as for possible prevention, diagnostics and therapy of pathological states. Apart from known chemical and direct contact electrical signaling pathways, electromagnetic phenomena were proposed by some authors to mediate non-chemical interactions on both intracellular and intercellular levels. Here, we discuss perspectives in the research of nanoscale electromagnetic interactions between biosystems on radiofrequency and microwave wavelengths. Based on our analysis, the main perspectives are in (i) the micro and nanoscale characterization of both passive and active radiofrequency properties of biomacromolecules and cells, (ii) experimental determination of viscous damping of biomacromolecule structural vibrations and (iii) detailed analysis of energetic circumstances of electromagnetic interactions between oscillating polar biomacromolecules. Current cutting-edge nanotechnology and computational techniques start to enable such studies so we can expect new interesting insights into electromagnetic aspects of molecular biophysics of cell signaling.
Zobrazit více v PubMed
Hille, B.: Ion Channels of Excitable Membranes. Sinauer Sunderland, MA (2001)
Cifra, M., Pospíšil, P.: Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B Biol. 139, 2–10 (2014) PubMed
Roda, A.: Chemiluminescence and Bioluminescence: Past, Present and Future. Royal Society of Chemistry (2010)
Reguera G. When microbial conversations get physical. Trends Microbiol. 2011;19(3):105–113. doi: 10.1016/j.tim.2010.12.007. PubMed DOI PMC
Pokorný J, Fiala J. Condensed energy and interaction energy in Frohlicḧ systems. Neural Network World. 1994;94(3):299–313.
Pokorný, J., Wu, T.-M.: Biophysical Aspects of Coherence and Biological Order. Academia, Praha, Czech Republic. Springer, Berlin - Heidelberg (1998)
Golant MB. O probleme rezonanchnogo deistva kogerentnykh elektromagnitnykh izluchenii millimetrovogo diapazona voln na zhivie organizmy. Biofizika. 1989;34(2):339–348. PubMed
Belyaev IY, Alipov YD, Shcheglov VS, Polunin VA, Aizenberg OA. Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity. Electro. Magnetobiol. 1994;13(1):53–66. doi: 10.3109/15368379409030698. DOI
Pooley DT. Bacterial bioluminescence, bioelectromagnetics and function. Photochem. Photobiol. 2011;87(2):324–328. doi: 10.1111/j.1751-1097.2010.00864.x. PubMed DOI
Tuszyński J, Brown J, Crawford E, Carpenter E, Nip M, Dixon J, Sataric M. Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 2005;41(10):1055–1070. doi: 10.1016/j.mcm.2005.05.002. DOI
Cifra M, Pokorný J, Havelka D, Kučera O. Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems. 2010;100(2):122–131. doi: 10.1016/j.biosystems.2010.02.007. PubMed DOI
Kučera, O., Havelka, D.: Mechano-electrical vibrations of microtubules–link to subcellular morphology. BioSystems 109, 356–366 (2012) PubMed
Havelka D, Cifra M, Kučera O. Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule. Appl. Phys. Lett. 2014;104(24):243702. doi: 10.1063/1.4884118. DOI
Felder CE, Prilusky J, Silman I, Sussman JL. A server and database for dipole moments of proteins. Nucleic Acids Res. 2007;35(suppl 2):W512–W521. doi: 10.1093/nar/gkm307. PubMed DOI PMC
Falconer RJ, Markelz AG. Terahertz spectroscopic analysis of peptides and proteins. Journal of Infrared, Millimeter, and Terahertz Waves. 2012;33(10):973–988. doi: 10.1007/s10762-012-9915-9. DOI
Wang C, Ru C, Mioduchowski A. Vibration of microtubules as orthotropic elastic shells. Physica E: Low-dimensional Systems and Nanostructures. 2006;35(1):48–56. doi: 10.1016/j.physe.2006.05.008. DOI
Deriu MA, Soncini M, Orsi M, Patel M, Essex JW, Montevecchi FM, Redaelli A. Anisotropic elastic network modeling of entire microtubules. Biophys. J. 2010;99(7):2190–2199. doi: 10.1016/j.bpj.2010.06.070. PubMed DOI PMC
Rousseau E, Siria A, Jourdan G, Volz S, Comin F, Chevrier J, Greffet J-J. Radiative heat transfer at the nanoscale. Nat. Photonics. 2009;3(9):514–517. doi: 10.1038/nphoton.2009.144. DOI
Clegg, R. M.: Förster resonance energy transfer—FRET: what is it, why do it, and how its done. Laboratory Techniques in Biochemistry and Molecular Biology (FRET and FLIM Techniques), vol. 33, pp. 1–57 (2009)
Andrews, D. L.: Mechanistic principles and applications of resonance energy transfer. Can. J. Chem. 86(9), 855–870 (2008)
Yoon, I.-J.: Realizing Efficient Wireless Power Transfer in the Near-Field Region Using Electrically Small Antennas. PhD thesis. University of Texas (2012)
Gupta, S. K., Lalwani, S., Prakash, Y., Elsharawy, E., Schwiebert, L.: Towards a propagation model for wireless biomedical applications. In: IEEE International Conference on Communications. ICC’03, vol. 3, pp. 1993–1997. IEEE (2003)
Girard C, Joachim C, Gauthier S. The physics of the near-field. Rep. Prog. Phys. 2000;63(6):893–938. doi: 10.1088/0034-4885/63/6/202. DOI
Preto J, Floriani E, Nardecchia I, Ferrier P, Pettini M. Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis. Phys. Rev. E. 2012;85(4):041904. doi: 10.1103/PhysRevE.85.041904. PubMed DOI
Nardecchia I, Spinelli L, Preto J, Gori M, Floriani E, Jaeger S, Ferrier P, Pettini M. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: Numerical study. Phys. Rev. E. 2014;90:022703. doi: 10.1103/PhysRevE.90.022703. PubMed DOI
Adair RK. Vibrational resonances in biological systems at microwave frequencies. Biophys. J. 2002;82(3):1147–1152. doi: 10.1016/S0006-3495(02)75473-8. PubMed DOI PMC
Adair R. Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics. 2003;24(1):39–48. doi: 10.1002/bem.10061. PubMed DOI
Foster KR, Baish JW. Viscous damping of vibrations in microtubules. J. Biol. Phys. 2000;26(4):255–260. doi: 10.1023/A:1010306216654. PubMed DOI PMC
Xie A, van der Meer A, Austin R. Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 2001;88(1):018102. doi: 10.1103/PhysRevLett.88.018102. PubMed DOI
Gruia F, Kubo M, Ye X, Champion P. Investigations of vibrational coherence in the low-frequency region of ferric heme proteins. Biophys. J. 2008;94(6):2252–2268. doi: 10.1529/biophysj.107.122119. PubMed DOI PMC
Liu T, Chen H, Yeh S, Wu C, Wang C, Luo T, Chen Y, Liu S, Sun C. Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations. Appl. Phys. Lett. 2009;95(17):173702. doi: 10.1063/1.3254251. DOI
Turton DA, Senn HM, Harwood T, Lapthorn AJ, Ellis EM, Wynne K. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun. 2014;5:3999. doi: 10.1038/ncomms4999. PubMed DOI
Pokorný J. Viscous effects on polar vibrations in microtubules. Electromagn. Biol. Med. 2003;22(1):15–29. doi: 10.1081/JBC-120020349. DOI
Mitrofanov V, Romanovsky Y, Netrebko A. On the damping of the fluctuations of atomic groups in water environment. Fluctuation Noise Lett. 2006;6(2):L133–L145. doi: 10.1142/S0219477506003227. DOI
Romanovsky Y, Netrebko A, Chikishev A. Are the subglobular oscillations of protein molecules in water overdamped? Laser Phys. 2003;13(6):827–838.
Brandt N, Chikishev AY, Dolgovskii V, Kargovskii A, Lebedenko S. Low-frequency vibrational motions in proteins: physical mechanisms and effect on functioning. Eur. Phys. J. B–Condensed Matter and Complex Systems. 2008;65(3):419–424. doi: 10.1140/epjb/e2008-00304-9. DOI
Hameroff S, Lindsay S, Bruchmann T, Scott A. Acoustic modes of microtubules. Biophys. J. 1986;49(2 Pt 2):58a. PubMed
Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G. Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 2002;35(4):327–367. doi: 10.1017/S0033583502003840. PubMed DOI
Wheaton S, Gelfand RM, Gordon R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nat. Photonics. 2015;9(1):68–72. doi: 10.1038/nphoton.2014.283. DOI
Kotnala, A., Wheaton, S., Gordon, R.: Playing the notes of dna with light: extremely high frequency nanomechanical oscillations. Nanoscale 7, 2295–2300 (2015) PubMed
Caplow M, Ruhlen RL, Shanks J. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 1994;127:779–788. doi: 10.1083/jcb.127.3.779. PubMed DOI PMC
Caplow M, Shanks J. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol. Biol. Cell. 1996;7(4):663–675. doi: 10.1091/mbc.7.4.663. PubMed DOI PMC
Pokorný J. Excitation of vibration in microtubules in living cells. Bioelectrochemistry. 2004;63(1-2):321–326. doi: 10.1016/j.bioelechem.2003.09.028. PubMed DOI
Pokorný J, Pokorný J, Kobilková J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013;5(12):1439–1446. doi: 10.1039/c3ib40166a. PubMed DOI
Turro, N. J., Ramamurthy, V., Scaiano, J. C.: Modern Molecular Photochemistry of Organic Molecules. University Science Books (2010)
Javaheri H, Barbiellini B, Noubir G. Energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. Nanoscale Res. Lett. 2012;7(1):1–7. doi: 10.1186/1556-276X-7-572. PubMed DOI PMC
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature. 2004;429(6988):177–180. doi: 10.1038/nature02534. PubMed DOI
Usselman RJ, Hill I, Singel DJ, Martino CF. Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS ONE. 2014;9(3):e93065. doi: 10.1371/journal.pone.0093065. PubMed DOI PMC
Gauger EM, Rieper E, Morton JJ, Benjamin SC, Vedral V. Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 2011;106(4):040503. doi: 10.1103/PhysRevLett.106.040503. PubMed DOI
Timmel C, Till U, Brocklehurst B, McLauchlan K, Hore P. Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 1998;95(1):71–89. doi: 10.1080/00268979809483134. PubMed DOI
Cifra M, Farhadi A, Fields JZ. Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 2011;105:223–246. doi: 10.1016/j.pbiomolbio.2010.07.003. PubMed DOI
Werfel J, Petersen K, Nagpal R. Designing collective behavior in a termite-inspired robot construction team. Science. 2014;343(6172):754–758. doi: 10.1126/science.1245842. PubMed DOI
Kučera O, Cifra M, Pokorný J. Technical aspects of measurement of cellular electromagnetic activity. Eur. Biophys. J. 2010;39(10):1465–1470. doi: 10.1007/s00249-010-0597-8. PubMed DOI
Johnson MD, Völker J, Moeller HV, Laws E, Breslauer KJ, Falkowski PG. Universal constant for heat production in protists. Proc. U.S.A. Natl. Acad. Sci. 2009;106(16):6696–6699. doi: 10.1073/pnas.0902005106. PubMed DOI PMC
Van Wijk R, Souren J, Schamhart D, Van Miltenburg J. Comparative studies of the heat production of different rat hepatoma cells in culture. Cancer Res. 1984;44(2):671–673. PubMed
Wagner BA, Venkataraman S, Buettner GR. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 2011;51(3):700–712. doi: 10.1016/j.freeradbiomed.2011.05.024. PubMed DOI PMC
Fröhlich H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A. 1968;26:402–403. doi: 10.1016/0375-9601(68)90242-9. DOI