Atomistic fingerprint of hyaluronan-CD44 binding

. 2017 Jul ; 13 (7) : e1005663. [epub] 20170717

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28715483
Odkazy

PubMed 28715483
PubMed Central PMC5549728
DOI 10.1371/journal.pcbi.1005663
PII: PCOMPBIOL-D-17-00070
Knihovny.cz E-zdroje

Hyaluronan is a polyanionic, megadalton-scale polysaccharide, which initiates cell signaling by interacting with several receptor proteins including CD44 involved in cell-cell interactions and cell adhesion. Previous studies of the CD44 hyaluronan binding domain have identified multiple widespread residues to be responsible for its recognition capacity. In contrast, the X-ray structural characterization of CD44 has revealed a single binding mode associated with interactions that involve just a fraction of these residues. In this study, we show through atomistic molecular dynamics simulations that hyaluronan can bind CD44 with three topographically different binding modes that in unison define an interaction fingerprint, thus providing a plausible explanation for the disagreement between the earlier studies. Our results confirm that the known crystallographic mode is the strongest of the three binding modes. The other two modes represent metastable configurations that are readily available in the initial stages of the binding, and they are also the most frequently observed modes in our unbiased simulations. We further discuss how CD44, fostered by the weaker binding modes, diffuses along HA when attached. This 1D diffusion combined with the constrained relative orientation of the diffusing proteins is likely to influence the aggregation kinetics of CD44. Importantly, CD44 aggregation has been suggested to be a possible mechanism in CD44-mediated signaling.

Zobrazit více v PubMed

Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer. 2004;4(7):528–539. 10.1038/nrc1391 PubMed DOI

Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. Journal of Biological Chemistry. 2002;277(7):4585–4588. 10.1074/jbc.R100036200 PubMed DOI

Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature Reviews Molecular Cell Biology. 2003;4(1):33–45. 10.1038/nrm1004 PubMed DOI

Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Molecular Cell. 2004;13(4):483–496. 10.1016/S1097-2765(04)00080-2 PubMed DOI

Banerji S, Day AJ, Kahmann JD, Jackson DG. Characterization of a functional hyaluronan-binding domain from the human CD44 molecule expressed in Escherichia coli. Protein Expression and Purification. 1998;14(3):371–381. 10.1006/prep.1998.0971 PubMed DOI

Kahmann JD, O’Brien R, Werner J, Heinegard M D, Ladbury J, Campbell I, Day AJ. Localization and characterization of the hyaluronan-binding site on the link module from human TSG-6. Structure. 2000;8(7):763–774. 10.1016/S0969-2126(00)00163-5 PubMed DOI

Banerji S, Ni J, Wang S, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. The Journal of Cell Biology. 1999;144(4):789–801. 10.1083/jcb.144.4.789 PubMed DOI PMC

Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. The Journal of Cell Biology. 1993;122(1):257–264. 10.1083/jcb.122.1.257 PubMed DOI PMC

Guvench O. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation. Frontiers in Immunology. 2015;6:305–305. 10.3389/fimmu.2015.00305 PubMed DOI PMC

Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the CD44–hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nature Structural & Molecular Biology. 2007;14(3):234–239. 10.1038/nsmb1201 PubMed DOI

Takeda M, Ogino S, Umemoto R, Sakakura M, Kajiwara M, Sugahara KN, et al. Ligand-induced structural changes of the CD44 hyaluronan-binding domain revealed by NMR. Journal of Biological Chemistry. 2006;281(52):40089–40095. 10.1074/jbc.M608425200 PubMed DOI

Ogino S, Nishida N, Umemoto R, Suzuki M, Takeda M, Terasawa H, et al. Two-state conformations in the hyaluronan-binding domain regulate CD44 adhesiveness under flow condition. Structure. 2010;18(5):649–656. 10.1016/j.str.2010.02.010 PubMed DOI

Jamison FW II, Foster TJ, Barker JA, Hills RD Jr, Guvench O. Mechanism of binding site conformational switching in the CD44–hyaluronan protein–carbohydrate binding interaction. Journal of Molecular Biology. 2011;406(4):631–647. 10.1016/j.jmb.2010.12.040 PubMed DOI

Favreau AJ, Faller CE, Guvench O. CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand. Biophysical Journal. 2013;105(5):1217–1226. 10.1016/j.bpj.2013.07.041 PubMed DOI PMC

Lesley J, English N, Perschl A, Gregoroff J, Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. The Journal of Experimental Medicine. 1995;182(2):431–437. 10.1084/jem.182.2.431 PubMed DOI PMC

English NM, Lesley JF, Hyman R. Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding. Cancer Research. 1998;58(16):3736–3742. PubMed

Skelton TP, Zeng C, Nocks A, Stamenkovic I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. The Journal of Cell Biology. 1998;140(2):431–446. 10.1083/jcb.140.2.431 PubMed DOI PMC

Wolny PM, Banerji S, Gounou C, Brisson AR, Day AJ, Jackson DG, et al. Analysis of CD44-hyaluronan interactions in an artificial membrane system insights into the distinct binding properties of high and low molecular weight hyaluronan. Journal of Biological Chemistry. 2010;285(39):30170–30180. PubMed PMC

Sleeman J, Rudy W, Hofmann M, Moll J, Herrlich P, Ponta H. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. The Journal of Cell Biology. 1996;135(4):1139–1150. 10.1083/jcb.135.4.1139 PubMed DOI PMC

Lawrance W, Banerji S, Day AJ, Bhattacharjee S, Jackson DG. Binding of hyaluronan to the native lymphatic vessel endothelial receptor LYVE-1 is critically dependent on receptor clustering and hyaluronan organization. Journal of Biological Chemistry. 2016;291(15):8014–8030. 10.1074/jbc.M115.708305 PubMed DOI PMC

Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. Journal of Biological Chemistry. 2012;287(51):43094–43107. 10.1074/jbc.M112.349209 PubMed DOI PMC

Xu GK, Qian J, Hu J. The glycocalyx promotes cooperative binding and clustering of adhesion receptors. Soft Matter. 2016;12(20):4572–4583. 10.1039/C5SM03139G PubMed DOI

Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. Journal of Biological Chemistry. 1998;273(1):338–343. 10.1074/jbc.273.1.338 PubMed DOI

Plazinski W, Knys-Dzieciuch A. Interactions between CD44 protein and hyaluronan: insights from the computational study. Molecular BioSystems. 2012;8(2):543–547. 10.1039/C2MB05399C PubMed DOI

Takeda M, Terasawa H, Sakakura M, Yamaguchi Y, Kajiwara M, Kawashima H, et al. Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments. Journal of Biological Chemistry. 2003;278(44):43550–43555. 10.1074/jbc.M308199200 PubMed DOI

Škerlová J, Král V, Kachala M, Fábry M, Bumba L, Svergun DI, et al. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85. Journal of Structural Biology. 2015;191(2):214–223. 10.1016/j.jsb.2015.06.005 PubMed DOI

Liu L, Finzel B. High-resolution crystal structures of alternate forms of the human CD44 hyaluronan-binding domain reveal a site for protein interaction. Acta Crystallographica Section F: Structural Biology Communications. 2014;70(9):1155–1161. PubMed PMC

Jana M, Bandyopadhyay S. Conformational flexibility of a protein–carbohydrate complex and the structure and ordering of surrounding water. Physical Chemistry Chemical Physics. 2012;14(18):6628–6638. 10.1039/c2cp24104h PubMed DOI

Jana M, Bandyopadhyay S. Restricted dynamics of water around a protein–carbohydrate complex: Computer simulation studies. The Journal of Chemical Physics. 2012;137(5):055102 10.1063/1.4739421 PubMed DOI

Plazinski W, Knys-Dzieciuch A. The ‘order-to-disorder’ conformational transition in CD44 protein: An umbrella sampling analysis. Journal of Molecular Graphics and Modelling. 2013;45:122–127. 10.1016/j.jmgm.2013.08.002 PubMed DOI

Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins: Structure, Function, and Bioinformatics. 2014;82(11):3079–3089. 10.1002/prot.24668 PubMed DOI PMC

Lu X, Huang X. Design and syntheses of hyaluronan oligosaccharide conjugates as inhibitors of CD44-Hyaluronan binding. Glycoconjugate Journal. 2015;32(7):549–556. 10.1007/s10719-015-9597-3 PubMed DOI PMC

Ebbesen MF, Olesen MT, Gjelstrup MC, Pakula MM, Larsen EK, Hansen IM, et al. Tunable CD44-specific cellular retargeting with hyaluronic acid nanoshells. Pharmaceutical Research. 2015;32(4):1462–1474. 10.1007/s11095-014-1552-7 PubMed DOI

Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29(7):845–854. 10.1093/bioinformatics/btt055 PubMed DOI PMC

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics. 2010;78(8):1950–1958. PubMed PMC

Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry. 2008;29(4):622–655. 10.1002/jcc.20820 PubMed DOI PMC

Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18(12):1463–1472. 10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. The Journal of Chemical Physics. 1993;98(12):10089–10092. 10.1063/1.464397 DOI

Shirts MR, Mobley DL, Chodera JD, Pande VS. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. The Journal of Physical Chemistry B. 2007;111(45):13052–13063. 10.1021/jp0735987 PubMed DOI

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics. 2007;126(1):4101 10.1063/1.2408420 PubMed DOI

Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52(12):7182–7190. 10.1063/1.328693 DOI

Han H, Stapels M, Ying W, Yu Y, Tang L, Jia W, et al. Comprehensive characterization of the N-glycosylation status of CD44s by use of multiple mass spectrometry-based techniques. Analytical and Bioanalytical Chemistry. 2012;404(2):373–388. 10.1007/s00216-012-6167-4 PubMed DOI

Bartolazzi A, Nocks A, Aruffo A, Spring F, Stamenkovic I. Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. The Journal of Cell Biology. 1996;132(6):1199–1208. 10.1083/jcb.132.6.1199 PubMed DOI PMC

Buch I, Giorgino T, De Fabritiis G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proceedings of the National Academy of Sciences. 2011;108(25):10184–10189. 10.1073/pnas.1103547108 PubMed DOI PMC

Jong DHD, Schäfer LV, Vries AHD, Marrink SJ, Berendsen HJC, Grubmüller H. Determining equilibrium constants for dimerization reactions from molecular dynamics simulations. Journal of Chemical Theory and Computation. 2011;32(9):1919–1928. PubMed

Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Advanced Drug Delivery Reviews. 2007;59(13):1351–1365. 10.1016/j.addr.2007.08.008 PubMed DOI PMC

Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, et al. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology. 2007;26(1):58–68. 10.1016/j.matbio.2006.08.261 PubMed DOI

Kothapalli D, Flowers J, Xu T, Puré E, Assoian RK. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. Journal of Biological Chemistry. 2008;283(46):31823–31829. 10.1074/jbc.M802934200 PubMed DOI PMC

Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflügers Archiv-European Journal of Physiology. 2007;454(3):345–359. 10.1007/s00424-007-0212-8 PubMed DOI PMC

Kreuger J, Spillmann D, Li Jp, Lindahl U. Interactions between heparan sulfate and proteins: the concept of specificity. Journal of Cell Biology. 2006;174(3):323–327. 10.1083/jcb.200604035 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

N-Glycosylation can selectively block or foster different receptor-ligand binding modes

. 2021 Mar 04 ; 11 (1) : 5239. [epub] 20210304

Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study

. 2020 Sep 12 ; 12 (9) : . [epub] 20200912

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...