Acquisition and metabolism of carbon in the Ochrophyta other than diatoms

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28717026

The acquisition and assimilation of inorganic C have been investigated in several of the 15 clades of the Ochrophyta other than diatoms, with biochemical, physiological and genomic data indicating significant mechanistic variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2 selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synurophyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2 concentrating mechanisms, usually involving the direct or indirect use of [Formula: see text] This variability is possibly due to the ecological contexts of the organism. In brown algae, C fixation generally takes place through a classical C3 metabolism, but there are some hints of the occurrence of C4 metabolism and low amplitude CAM in a few members of the Fucales. Genomic data show the presence of a number of potential C4 and CAM genes in Ochrophyta other than diatoms, but the other core functions of many of these genes give a very limited diagnostic value to their presence and are insufficient to conclude that C4 photosynthesis is present in these algae.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.

Erratum v

PubMed

Zobrazit více v PubMed

Raven JA, Beardall J, Larkum AWD, Sánchez-Baracaldo P. 2013. Interactions of photosynthesis with genome size and function. Phil. Trans. R. Soc. B 368, 20120264 (10.1098/rstb.2012.0264) PubMed DOI PMC

Beakes GW, Glockling SL, Sekimoto S. 2012. The evolutionary phylogeny of the oomycete ‘fungi’. Protoplasma 249, 3–19. (10.1007/s00709-011-0269-2) PubMed DOI

Maberly SC, Ball LA, Raven JA, Sűltmeyer D. 2009. Inorganic carbon acquisition by chrysophytes. J. Phycol. 49, 1052–1061. (10.1111/j.1529-8817.2009.00734.x) PubMed DOI

Wilken S, Schuurmans JM, Matthijs HCP. 2014. Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. New. Phytol. 204, 882–889. (10.1111/nph.12975) PubMed DOI

Yang EC, Boo GH, Kim HJ, Cho SM, Boo SH, Anderson RA, Yoon HW. 2012. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163, 217–231. (10.1016/j.protis.2011.08.001) PubMed DOI

Baurain D, et al. 2010. Phylogenetic evidence for separate acquisition of plastids in cryptophytes, haptophytes and stramenopiles. Mol. Biol. Evol. 22, 1698–1709. (10.1093/molbev/msq059) PubMed DOI

Brown JW, Sorhannus U. 2010. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (10.1371/journal.pone.0012759) PubMed DOI PMC

Schmidt M, Horn S, Flieger K, Ehlers K, Wilhelm C, Schnetter R. 2012. Synchroma pusillum sp. nov. and other new algal isolates with chloroplast complexes confirm the Synchromophyceae (Ochrophyta) as a widely distributed group of amoeboid algae. Protist 163, 544–559. (10.1016/j.protis.2011.11.009) PubMed DOI

Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price DG. 1998. The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071. (10.1139/b98-074) DOI

Roberts K, Granum E, Leegood RC, Raven JA. 2007. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88. (10.1007/s11120-007-9172-2) PubMed DOI

Nakajima K, Tanaka A, Matsuda Y. 2013. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl Acad. Sci. USA 110, 1767–1772. (10.1073/pnas.1216234110) PubMed DOI PMC

Clement R, Dimnot L, Maberly SC, Gontero B. 2016. The nature of the CO2-concentrating mechanisms in a marine diatom, Thalassiosira pseudonana . New Phytol. 209, 1417–1427. (10.1111/nph.13728) PubMed DOI

Round FE, Crawford RM, Mann DG. 1990. Diatoms: biology and morphology of the genera. Cambridge, UK: Cambridge University Press.

Rousseaux CS, Gregg WW. 2014. Interannual variation in phytoplankton primary production at a global scale. Remote Sens. 6, 1–19. (10.3390/rs6010001) DOI

Silberfeld T, Leigh JW, Vergruggen H, Cruaud C, de Reviers B, Rousseau F. 2014. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the ‘brown algal crown radiation’. Mol. Phylogenet. Evol. 56, 659–674. (10.1016/j.ympev.2010.04.020) PubMed DOI

Hurd CL, Harrison PJ, Bischof K, Lobban CS. 2014. Seaweed ecology and physiology, 2nd edn Cambridge, UK: Cambridge University Press.

Saxby-Rouen KJ, Leadbeater BS, Reynolds CS. 1997. The relationship between the growth of Synura petersenii (Synurophyceae) to photon flux density, temperature and pH. Phycologia 36, 233–243. (10.2216/i0031-8884-36-3-233.1) DOI

Nixdorf B, Mischke U. 1998. Chrysophytes and chlamydomonads: pioneer colonists in extremely acid mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369/370, 315–327. (10.1023/A:1017010229136) DOI

Wolfe AP, Siver PA. 2013. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Glob. Planet. Chang. 111, 189–198. (10.1016/j.gloplacha.2013.09.014) DOI

Sukenik A, Beardall J, Kromkamp J, Kopecký J, Macojídek J, Bergegeijk S, Gabon S, Shahan E, Yamishon A. 2009. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat. Microb. Ecol. 56, 297–308. (10.3354/ame01309) DOI

Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Sattlage RE, Boore JL, Rosewitz MC. 2011. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana . Nat. Commun. 3, 686 (10.1038/ncomms1688) PubMed DOI PMC

Vieler A, et al. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS ONE 8, e1003064 (10.1371/journal.pgen.1003064)) PubMed DOI PMC

Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algae are vitamin B1 and B12 auxotrophs. Proc. Natl Acad. Sci. USA 107, 20 756–20 761. (10.1073/pnas.1009566107) PubMed DOI PMC

Raven JA, Beardall J, Giordano M. 2014. Energy costs of concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124. (10.1007/s11120-013-9962-7) PubMed DOI

Raven JA, Giordano M, Beardall J, Maberly SC. 2012. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil. Trans. R Soc. B 367, 493–507. (10.1098/rstb.2011.0212) PubMed DOI PMC

Raven JA, Beardall J. 2014. CO2 concentrating mechanisms and environmental change. Aquat. Bot. 118, 24–37. (10.1016/j.aquabot.2014.05.008) DOI

Raven JA, Beardall J. 2016. The ins and outs of carbon dioxide. J. Exp. Bot. 67, 1–13. (10.1093/jxb/erv451) PubMed DOI PMC

Fernández PA, Hurd CL, Roleda MY. 2014. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J. Phycol. 50, 998–1008. (10.1111/jpy.12247) PubMed DOI

Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM. 2016. Large variations in the Rubisco kinetics of diatoms reveals diversity among their carbon concentrating mechanisms. J. Exp. Bot. 67, 3445–3456. (10.1093/jxb/erw163) PubMed DOI PMC

Tchernov D, Livne A, Kaplan A, Sukenik A. 2008. The kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase may explain the high apparent photosynthetic affinity of Nannochloropsis sp. to ambient inorganic carbon. Isr. J. Plant Sci. 56, 37–44. (10.1560/IJPS.56.1-2.37) DOI

Bhatti S, Colman B. 2008. Inorganic carbon acquisition in some synurophyte algae. Physiol. Plant. 133, 33–40. (10.1111/j.1399-3054.2008.01061.x) PubMed DOI

Johnston AM. 1991. The acquisition of inorganic carbon by marine macroalgae. Can. J. Bot. 69, 1123–1132. (10.1139/b91-144) DOI

Newman SM, Cattolico RA. 1987. Structural, functional and evolutionary analysis of Ribulose-1,5-bisphosphate carboxylase from the chromophyte alga Olisthodiscus luteus . Plant Physiol. 84, 483–490. (10.1104/pp.84.2.483) PubMed DOI PMC

Newman SM, Derocher J, Cattolico RA. 1989. Analysis of chromophytic and rhodophytic ribulose-1.5-bisphosphonate carboxylase indicated extensive structural and functional similarities among evolutionarily diverse algae. Plant Physiol. 91, 939–946. (10.1104/pp.91.3.939) PubMed DOI PMC

Tcherkez GGB, Farquhar GD, Andrews TJ. 2006. Despite slow catalysis and confused kinetics, nearly all ribulose bisphosphate carboxylases may be nearly perfectly optimised. Proc. Natl Acad. Sci. USA 103, 7246–7251. (10.1073/pnas.0600605103) PubMed DOI PMC

Young JN, Rickaby REM, Kapralov MV, Filatov DA. 2012. Adaptive signals in ancient Rubisco reveal a history of ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. B 367, 483–492. (10.1098/rstb.2011.0145) PubMed DOI PMC

Maberly SC. 1996. Diel, episodic and seasonal changes in pH and inorganic carbon in a productive lake. Freshwater Biol. 35, 579–598. (10.1111/j.1365-2427.1996.tb01770.x) DOI

Casper P, Maberly SC, Hall GH, Finlay BJ. 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49, 1–10. (10.1023/A:1006269900174) DOI

Saxby-Rouen KJ, Leadbeater BS, Reynolds CS. 1998. The growth of Synura petersenii (Synurophyceae) and components of the dissolved inorganic carbon system. Phycologia 37, 467–477. (10.2216/i0031-8884-37-6-467.1) DOI

Bhatti S, Colman B. 2005. Inorganic carbon acquisition in the chrysophyte alga Mallomonas papillosa. Can. J. Bot. 83, 891–897. (10.1139/b05-075) DOI

Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC. 2005. Algae lacking carbon-concentrating mechanisms. Can. J. Bot. 83, 879–890. (10.1139/b05-074) DOI

Bhatti S, Colman B. 2011. Evidence of the occurrence of photorespiration in synurophyte algae. Photosynth. Res. 109, 251–256. (10.1007/s11120-011-9639-z) PubMed DOI

Wilken S, Huisman J, Naus-Wiezer S, van Donk E. 2013. Mixotrophic organisms became more heterotrophic with rising temperatures. Ecol. Lett. 16, 225–233. (10.1111/ele.12033) PubMed DOI

Yamada K, Yoshikawa S, Inchinomiya M, Kuwata A, Kamiya M, Ohki K. 2014. Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta). PLoS ONE 9, e103289 (doi:10.137q/journal.pone.0103289) PubMed DOI PMC

Finkel ZV. 2016. Silicification in Microalgae. In The physiology of microalgae. Developments in applied phycology 6 (eds Borowitzka MA, Beardall J, Raven JA), pp. 289–300. Cham, Switzerland: Springer International Publishing.

Milligan AJ, Morel FMM. 2002. A proton buffering role for silica in diatoms. Science 297, 1848–1850. (10.1126/science.1074958) PubMed DOI

Hibberd DJ. 1978. The fine structure of Synura sphagnicola (Korsch.) Korsch (Chrysophyceae). Brit. Phycol. J. 13, 403–412. (10.1080/00071617800650451) DOI

Huertas IE, Colman B, Espie GS. 2002. Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. Plant Physiol. 130, 284–291. (10.1104/pp.004598) PubMed DOI PMC

Huertas IE, Colman B, Espie GS. 2002. Inorganic carbon acquisition and its energization in eustimatophyte algae. Funct. Plant. Biol. 29, 271–277. (10.1071/PP01181) PubMed DOI

Huertas IE, Bhatti S, Colman B. 2005. Characterization of the CO2-concentrating mechanism in the unicellular alga Eustigmatos vischeri . Eur. J. Phycol. 40, 409–415. (10.1080/09670260500342571) DOI

Colman A, Huertas IE, Bhati S, Dason JS. 2002. The diversity of inorganic carbon acquisition mechanisms in eukaryotic algae. Funct. Plant Biol. 29, 261–270. (10.1071/PP01184) PubMed DOI

Munoz J, Merrett MJ. 1989. Inorganic carbon transport in some marine eukaryotic microalgae. Planta 178, 450–455. (10.1007/BF00963814) PubMed DOI

Merrett MJ, Nimer MJ, Dong LF. 1996. The ulilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ. 19, 478–484. (10.1111/j.1365-3040.1996.tb00340.x) DOI

Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A. 1997. Uptake, efflux and photosynthetic utilization of inorganic carbon by the eustigmatophyte Nannochloropsis sp. J. Phycol. 33, 969–974. (10.1111/j.0022-3646.1997.00969.x) DOI

Tchernov D, Hassidim M, Luz B., Sukenik A, Reinhold L, Kaplan A. 1997. Sustained net CO2 evolution during photosynthesis by marine microorganism. Curr. Biol. 7, 723–738. (10.1016/S0960-9822(06)00330-7) PubMed DOI

Huertas IE, Lubian LM. 1998. Comparative study of inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can. J. Bot. 76, 1104–1108. (10.1139/b98-068) DOI

Huertas IE, Espie GS, Colman B, Lubian LM. 2000. Light dependent bicarbonate transport and CO2 efflux in the marine microalgae Nannochloropsis gaditana. Planta 211, 43–49. (10.1007/s004250000254) PubMed DOI

Hanson DT, Collins AM, Jones HDT, Roesgen J, Lopez-Nieves S, Timlin JA. 2014. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina . Photosynth. Res. 121, 311–322. (10.1007/s11120-014-0001-0) PubMed DOI PMC

Raso S, van Genugten B, Vermuë M, Wijffels RH. 2012. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J. Appl. Phycol. 24, 863–871. (10.1007/s10811-011-9706-z) PubMed DOI PMC

Maruyama I, Nakamura T, Matsubayashi T, Ando Y, Maeda T. 1986. Identification of the alga known as ‘marine Chlorella’ as a member of the Eustigmatophyceae. Jap. J. Phycol. 34, 319–325.

Hibberd DJ, Leedale GF. 1972. Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann. Bot. 36, 49–71. (10.1093/oxfordjournals.aob.a084577) DOI

Suda S, Atsumi M, Miyashita M. 2002. Taxonomic characterization of a marine Nannochloropsis species N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 4, 273–279. (10.2216/i0031-8884-41-3-273.1) DOI

Chen Z-Y, Lavigne LL, Mason CB, Moroney JV. 1997. Cloning and overexpression of two cDNAs encoding the low-CO2 inducible chloroplast envelope protein LIP-36 from Chlamydomonas reinhardtii . Plant Physiol. 114, 265–273. (10.1104/pp.114.1.265) PubMed DOI PMC

Miura K, et al. 2004. Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii . Plant Physiol. 135, 1595–1607. (10.1104/pp.104.041400) PubMed DOI PMC

Poliner E, et al. 2015. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCM1779 under light/dark cycles. Plant J. 83, 1097–1113. (10.1111/tpj.12944) PubMed DOI

Romero MF, Chen A-P, Parker MD, Boron WF. 2013. The SLC4 family of bicarbonate (HCO3−) transporters. Mol. Aspects Med. 34, 159–182. (10.1016/j.mam.2012.10.008) PubMed DOI PMC

Raven JA. 1984. Energetics and transport in aquatic plants. New York, NY: A.R. Liss.

Raven JA. 2016. Chloride: essential micronutrient and multifunctional beneficial ion. J. Exp. Bot. 68, 359–367. (10.1093/jxb/erw421) PubMed DOI

Li J, Han D, Wang D, Ning K, Jia J, Jing X, Hunang S, Chen Q, Xu J. 2014. Choreography of transcriptomics and lipidomics of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26, 1645–1665. (10.1105/tpc.113.121418) PubMed DOI PMC

Maberly SC. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26, 439–449. (10.1111/j.0022-3646.1990.00439.x) DOI

Raven JA, Beardall J, Roberts S. 1989. The ecophysiology of inorganic carbon assimilation by Durvillaea potatorum (Durvillaeales, Phaeophyta). Phycologia 28, 429–437. (10.2216/i0031-8884-28-4-429.1) DOI

Raven JA, Beardall J, Johnston AM, Kübler JE, Geoghegan I. 1995. Inorganic carbon acquisition by Hormosira banksii (Phaeophyta: Fucales) and its epiphyte Notheia anomala (Phaeophyta: Fucales). Phycologia 34, 267–277. (10.2216/i0031-8884-34-4-267.1) DOI

Raven JA, Beardall J, Johnston AM, Kübler JE, McInroy SG. 1996. Inorganic carbon acquisition by Xiphophora chondrophylla (Phaeophyta: Fucales). Phycologia 35, 83–89. (10.2216/i0031-8884-35-2-83.1) DOI

Zou D, Gao K. 2010. Acquisition of inorganic carbon by Endarachne binghamianum (Scytosiphonales, Phaeophyta). Eur. J. Phycol. 45, 117–126. (10.1080/09670260903383909) DOI

Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497. (10.1111/j.1365-2486.2011.02411.x) DOI

Marconi M, Giordano M, Raven JA. 2011. Impact of taxonomy, geography and depth on δ13C and δ15N variation in a large collection of macroalgae. J. Phycol. 47, 1023–1035. (10.1111/j.1529-8817.2011.01045.x) PubMed DOI

Zou D, Gao K, Chen W. 2011. Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between vegetative and reproductive tissue. Photosynth. Res. 107, 159–168. (10.1007/s11120-010-9612-2) PubMed DOI

Fernández PA, Roleda MY, Hurd CL. 2015. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 124, 293–304. (10.1007/s11120-015-0138-5) PubMed DOI

Middelboe AL, Hansen PJ. 2007. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar. Biol. Res. 3, 134–144. (10.1080/17451000701320556) DOI

Stepien CC. 2015. Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. J. Ecol. 103, 1372–1383. (10.1111/1365-2745.12451) DOI

Boller AR, Thomas PJ, Cavenaugh M, Scott KM. 2015. Isotopic discrimination and kinetic parameters of Rubisco from the marine bloom forming diatom Skeletonema costatum . Geobiology 13, 33–43. (10.1111/gbi.12112) PubMed DOI

Johnston AM, Raven J.A. 1986. The utilization of bicarbonate by the macroalga Ascophylum nodosum (L.) Le Jol. Plant Cell Environ. 9, 175–184.

Johnston AM, Raven JA. 1986. The analysis of photosynthesis in air and water by the Ascophyllum nodosum (L.) Le Jol. Oeologia 69, 175–184. (10.1007/bf00377636) PubMed DOI

Johnston AM, Raven JA. 1987. The C4-like characteristics of the intertidal macroalgae Ascophyllum nodosum (L.) Le Jolis (Fucales, Phaeophyta). Phycologia 26, 159–166. (10.2216/i0031-8884-26-2-159.1) DOI

Surif MB, Raven JA. 1989. Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78, 97–105. (10.1007/BF00377203) PubMed DOI

Surif MB, Raven JA. 1990. Photosynthetic gas exchange in eulittoral and normally submersed members of the Fucales and Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82, 68–80. (10.1007/BF00318535) PubMed DOI

Lüning K. 1990. Seaweeds: their environment, biogeography and physiology. New York, NY: John Wiley.

Black CC, Burris JE, Everson RG. 1976. Influence of oxygen concentration of photosynthesis in marine plants. Aust. J. Plant Physiol. 3, 81–86. (10.1071/PP9760081) DOI

Downton WJS, Bishop DG, Larkum AWD, Osmond CB. 1976. Oxygen inhibition of photosynthetic O2 evolution in marine plants. Aust. J. Plant Physiol. 3, 73–78. (10.1071/PP9760073) DOI

Burris JE. 1977. Photosynthesis, photorespiration, and dark respiration in eight species of algae. Mar. Biol. 39, 371–379. (10.1007/BF00391940) DOI

Dromgoole FI. 1978. The effects of pH and inorganic carbon on photosynthesis and dark respiration of Carpophyllum (Fucales, Phaeophyceae). Aquat. Bot. 4, 11–22. (10.1016/0304-3770(78)90003-7) DOI

Dromgoole FI. 1978. The effects of O2 on dark respiration and apparent photosynthesis of marine macro-algae. Aquat. Bot. 4, 281–297. (10.1016/0304-3770(78)90025-6) DOI

Gross W. 1990. Occurrence of glycolate oxidase and hydroxypyruvate reductase in Egregia menziesii (Phaeophyta). J. Phycol. 26, 381–383. (10.1111/j.0022-3646.1990.00381.x) DOI

Iwamoto K, Ikawa T. 1997. Glycolate metabolism and subcellular distribution of glycolate oxidase in Spatoglossum pacificum (Phaeophyceae, Chromophyta). Phycol. Res. 45 77–83. (10.1111/j.1440-1835.1997.tb00066.x) DOI

Raven JA, Hurd CL. 2012. Ecophysiology of photosynthesis in macroalgae. Photosynth. Res. 113, 105–125. (10.1007/s11120-012-9768-z) PubMed DOI

Zhang X, Hu H, Tan T. 2006. Photosynthetic organic carbon utilization by gametophytes and sporophytes of Undaria pinnatifida (Phaeophyceae). Phycologia 45, 642–647. (10.2216/05-28.1) DOI

Larsson C, Axelsson L. 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. 34, 79–86. (10.1080/09670269910001736112) DOI

Schmid R. 1998. Photosynthesis by Ectocarpus siliculosus in red light and after pulses of blue light at high pH—evidence for bicarbonate uptake. Plant Cell Environ. 21, 523–529. (10.1046/j.1365-3040.1998.00297.x) DOI

Schmid R, Forster R, Dring MJ. 1992. Circadian rhythm and fast responses in Ectocarpus (Phaeophyta, Ectocarpales): II. Light and CO2 dependence of photosynthesis. Planta 187, 60–66. (10.1007/BF00201624) PubMed DOI

Schmid R, Hillrichs S. 2001. Uptake and accumulation of inorganic carbon in Ectocarpus sliculosus and its relation to blue light stimulation of photosynthesis. Eur. J. Phycol. 36, 257–264. (10.1080/09670260110001735408) DOI

Walker NA, Smith FA, Cathers IR. 1980. Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate is not proven. J. Membr. Biol. 57, 51–58. (10.1007/BF01868985) DOI

Price GD, Badger MR, Bassett ME, Whitecross MI. 1985. Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina . Aust. J. Plant Biol. 12, 241–256. (10.1071/PP9850241) DOI

Price GD, Badger MR. 1985. Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina . Aust. J. Plant Biol. 12, 257–267. (10.1071/PP9850257) DOI

Schmid R, Dring MJ. 1993. Rapid, blue light-induced acidifications at the surface of Ectocarpus and other marine macroalgae. Plant Physiol. 101, 907–913. (10.1104/pp.101.3.907) PubMed DOI PMC

Axelsson L, Mercado JM, Figueroa FL. 2000. Utilization of HCO3− at high pH by the brown macroalga Laminaria saccharina . Eur. J. Phycol. 35, 53–59. (10.1080/09670260010001735621) DOI

Klenell M, Snoejis P, Pedersén M. 2004. Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514, 41–53. (10.1023/B:hydr.0000018205.80186.3e) DOI

Mercado J.M, Andria J.R, Pérez-Llorens JL, Vergara JJ, Axelsson L. 2006. Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina . Photosynth. Res. 88, 259–268. (10.1007/s11120-006-9039-y) PubMed DOI

Giordano M, Maberly SC. 1989. Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81, 534–539. (10.1007/BF00378965) PubMed DOI

Haglund K, Ramazanov Z, Mtolera M, Pedersén M. 1992. Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta). Planta 188, 1–6. (10.1007/BF01160705) PubMed DOI

Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, De Reviers B. 2010. A multilocus time-calibrated phylogeny of the brown algae (Heterokonotophyta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the ‘brown algal crown radiation’. Mol. Phylogenet. Evol. 56, 659–674. (10.1016/j.ympev.2010.04.020) PubMed DOI

Silberfeld T, Racault M-FLP, Fletcher RL, Couloux A, Rousseau F, de Reviers B. 2011. Systematics and evolutionary history of pyrenoid-bearing taxa in the brown algae (Phaeophyceae). Eur. J. Phycol. 46, 361–377. (10.1080/09670262.2011.628698) DOI

Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collén J, Boyen C, Bouchereau A, Tonon T. 2010. Diurnal oscillations of metabolite abundances and gene analysis prove new insights into central carbon metabolic processes of the brown alga Ecocarpus siliculosus . New Phytol. 188, 98–110. (10.1111/j.1469-8137.2010.03400.x) PubMed DOI

Meyer M, Griffiths H. 2013. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J. Exp. Bot. 64, 769–786. (10.1093/jxb/ers390) PubMed DOI

Ye N, et al. 2015. Saccharina genomes provide novel insights into kelp biology. Nat. Commun. 6, 6986 (10.1038/ncomms7986) PubMed DOI PMC

Bi Y, Zhou Z. 2016. Absorption and transport of inorganic carbon in kelps with emphasis on Saccharina japonica. In Applied photosynthesis—new progress (ed. MM Najafpour), pp. 111–131. Rijeka, Croatia: InTech Open Publishers.

Newman S, Deracher TS, Cattolico RA. 1989. Analysis of chromophytic and rhodophyte ribulose-1,5-bisphosphate indicates extensive structural and functional similarities among evolutionarily diverse algae . Plant Physiol. 91, 939–946. (10.1104/pp.91.3.939) PubMed DOI PMC

Clark DR, Flynn KJ. 2000. The relationship between dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proc. R. Soc. B. 267, 953–959. (10.1098/rspb.2000.1096) PubMed DOI PMC

Nimer NA, Iglesias-Rodriguez MD, Merrett MJ. 1997. Bicarbonate utilization by marine phytoplankton species. J. Phycol. 33, 625–631. (10.1111/j.0022-3646.1997.00625.x) DOI

Yamaguchi H, Nakayama T, Murakami A, Inouye I. 2010. Phylogeny and taxonomy of the Raphidophyceae (Heterokontophyta) and Chlorinolomas sublosa gen. et sp. nov., a new marine sand-dwelling raphidophyte. J. Plant Res. 123, 333–342. (10.1007/s10265-009-0281-1) PubMed DOI

Beardall J, Entwisle L. 1984. Evidence for a CO2 concentrating mechanism in Botrydiopsis (Tribophyceae). Phycologia 23, 511–513. (10.2216/i0031-8884-23-4-511.1) DOI

Ichinomiya M, et al. 2016. Diversity and oceanic distribution of the Parmales (Bolidiphyceae), a picoplanktonic group closely related to the diatoms. ISME J. 10, 2419–2434. (10.1038/ismej.2016.38) PubMed DOI PMC

DeYoe HR, Stockwell DA, Bidigare RR, Latasa M, Johnston PW, Hargreaves PE, Suttle CA. 1997. Description and characterization of the algal species Aureoumbra lagunensis gen. et sp. nov, and referral of Aureoumbra and Aureococcus to the Pelagophyceae. J. Phycol. 33, 1042–1048. (10.1111/j.0022-3646.1997.01042.x) DOI

Kremer BP, Küppers U. 1977. Carboxylating enzymes and the pathway of photosynthetic carbon assimilation in different marine algae—evidence for the C4 pathway? Planta 133, 191–196. (10.1007/BF00391918) PubMed DOI

Kremer BP. 1980. Taxonomic implications of algal photoassimilate patterns. Brit. Phycol. J. 15, 399–409. (10.1080/00071618000650401) DOI

Kremer BP. 1980. Photorespiration and β-carboxylation in brown macroalgae. Planta 150, 189–190. (10.1007/BF00582365) PubMed DOI

Busch S, Schmid R. 2001. Enzymes associated with β-carboxylation in Ectocarpus siliculosus (Phaeophyceae): are they involved in net carbon acquisition? Eur. J. Phycol. 36, 61–70. (10.1017/s0967026201003067) DOI

Hillrichs S, Schmid R. 2001. Activation by blue light of inorganic carbon acquisition for photosynthesis in Ectocarpus siliculosus: organic acid pools and short-term carbon fixation. Eur. J. Phycol. 36, 71–79. (10.1080/09670260110001735218) DOI

Koch M, Bowes G, Ross C, Zhang X-H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132. (10.1111/j.1365-2486.2012.02791.x) PubMed DOI

Kremer BP. 1981. C4-metabolism in marine brown macrophytic algae. Z. Naturforsch. 39C, 840–847.

Küppers U, Kremer BP. 1978. Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. Plant Physiol. 62, 49–53. (10.1104/pp.62.1.49) PubMed DOI PMC

Axelsson L, Carlberg S, Ryberg H. 1989. Adaptations by macroalgae to low carbon availability. I. A buffer system in Ascophyllum nodosum, associated with photosynthesis. Plant Cell Environ. 12, 765–770. (10.1111/j.1365-3040.1989.tb01637.x) DOI

Axelsson L, Carlberg S, Ryberg H. 1989. Adaptations by macroalgae to low carbon availability. II. Ultrastructural specializations, related to the function of a photosynthetic buffer system in the Fucaceae. Plant Cell Environ. 12, 771–778. (10.1111/j.1365-3040.1989.tb01638.x) DOI

Forster RM, Dring MJ. 1994. Influence of blue light on the photosynthetic capacity of marine plants from different taxonomic, ecological and morphological groups. Eur. J. Phycol. 29, 21–27. (10.1080/09670269400650441) DOI

Dring MJ, Forster RM, Schmid R. 1994. Ecological significance of blue light stimulation of photosynthetic capacity in Laminaria spp. and other brown algae. Mar. Ecol. Progr. Ser. 113, 271–277. (10.3354/meps113271) DOI

Kawamatsu Y, Boyer JS. 1999. Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus . Mar. Biol. 133, 361–369. (10.1007/s002270050475) DOI

Keeley JE. 1998. CAM photosynthesis in submerged aquatic plants. Bot. Rev. 64, 121–175. (10.1007/BF02856581) DOI

Aubry S, Brown NJ, Hibberd JM. 2011. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J. Exp. Bot. 62, 3049–3059. (10.1093/jxb/err012) PubMed DOI

Chi S, Wu S, Yu J, Wang X, Tang X, Liu T. 2014. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes. PLoS ONE 9, e110154 (10.1371/journal.pone.0110154) PubMed DOI PMC

Kroth PG, et al. 2008. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from whole genome analysis. PLoS ONE 3, e1426 (10.1371/journal.pone.0001426) PubMed DOI PMC

Descolas-Gros C, Oriol L. 1992. Variations in carboxylase activity in marine phytoplankton cultures. Mar. Ecol. Progr. Ser. 85, 163–169. (10.3354/meps085163) DOI

Wurch LL, Bertrand EH, Saito MA, van Mooy BAS, Dyhrman ST. 2011. Proteome changes driven by phosphorus deficiency in the brown tide-forming alga Aureococcus anophagefferens . PLoS ONE 6, e28949 (10.1371/journal.pone.0028949) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...