Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
280829
European Research Council - International
P30 AI051519
NIAID NIH HHS - United States
PubMed
28753126
PubMed Central
PMC5577925
DOI
10.7554/elife.26067
PII: 26067
Knihovny.cz E-resources
- Keywords
- HIV, biochemistry, cell biology, endoplasmic reticulum, gp160, human, protein folding, signal peptide, translocation,
- MeSH
- Cell Line MeSH
- HIV Envelope Protein gp160 chemistry metabolism MeSH
- HIV-1 physiology MeSH
- Protein Conformation MeSH
- Humans MeSH
- Protein Sorting Signals * MeSH
- Proteolysis MeSH
- Protein Folding * MeSH
- Protein Transport MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- gp160 protein, Human immunodeficiency virus 1 MeSH Browser
- HIV Envelope Protein gp160 MeSH
- Protein Sorting Signals * MeSH
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
Janelia Research Campus Howard Hughes Medical Institute Ashburn United States
Science for Life Laboratory Stockholm University Solna Sweden
See more in PubMed
Andrews DW, Perara E, Lesser C, Lingappa VR. Sequences beyond the cleavage site influence signal peptide function. Journal of Biological Chemistry. 1988;263:15791–15798. PubMed
Araújo LA, Almeida SE. HIV-1 diversity in the envelope glycoproteins: implications for viral entry inhibition. Viruses. 2013;5:595–604. doi: 10.3390/v5020595. PubMed DOI PMC
Aronson DE, Costantini LM, Snapp EL. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic. 2011;12:543–548. doi: 10.1111/j.1600-0854.2011.01168.x. PubMed DOI PMC
Asmal M, Hellmann I, Liu W, Keele BF, Perelson AS, Bhattacharya T, Gnanakaran S, Daniels M, Haynes BF, Korber BT, Hahn BH, Shaw GM, Letvin NL. A signature in HIV-1 envelope leader peptide associated with transition from acute to chronic infection impacts envelope processing and infectivity. PLoS One. 2011;6:e23673. doi: 10.1371/journal.pone.0023673. PubMed DOI PMC
Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I. N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein Science. 2011;20:179–186. doi: 10.1002/pro.551. PubMed DOI PMC
Barash S, Wang W, Shi Y. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochemical and Biophysical Research Communications. 2002;294:835–842. doi: 10.1016/S0006-291X(02)00566-1. PubMed DOI
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI
Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. Journal of Cell Biology. 1975;67:835–851. doi: 10.1083/jcb.67.3.835. PubMed DOI PMC
Blumenthal R, Durell S, Viard M. HIV entry and envelope glycoprotein-mediated fusion. Journal of Biological Chemistry. 2012;287:40841–40849. doi: 10.1074/jbc.R112.406272. PubMed DOI PMC
Bontjer I, Land A, Eggink D, Verkade E, Tuin K, Baldwin C, Pollakis G, Paxton WA, Braakman I, Berkhout B, Sanders RW. Optimization of human immunodeficiency virus type 1 envelope glycoproteins with V1/V2 deleted, using virus evolution. Journal of Virology. 2009;83:368–383. doi: 10.1128/JVI.01404-08. PubMed DOI PMC
Bontjer I, Melchers M, Eggink D, David K, Moore JP, Berkhout B, Sanders RW. Stabilized HIV-1 envelope glycoprotein trimers lacking the V1V2 domain, obtained by virus evolution. Journal of Biological Chemistry. 2010;285:36456–36470. doi: 10.1074/jbc.M110.156588. PubMed DOI PMC
Braakman I, Hoover-Litty H, Wagner KR, Helenius A. Folding of influenza hemagglutinin in the endoplasmic reticulum. Journal of Cell Biology. 1991;114:401–411. doi: 10.1083/jcb.114.3.401. PubMed DOI PMC
Chapman BS, Thayer RM, Vincent KA, Haigwood NL. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Research. 1991;19:3979–3986. doi: 10.1093/nar/19.14.3979. PubMed DOI PMC
Choo KH, Ranganathan S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinformatics. 2008;9 Suppl 12:S15. doi: 10.1186/1471-2105-9-S12-S15. PubMed DOI PMC
Choo KH, Tan TW, Ranganathan S. SPdb--a signal peptide database. BMC Bioinformatics. 2005;6:249. doi: 10.1186/1471-2105-6-249. PubMed DOI PMC
Claros MG, von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Bioinformatics. 1994;10:685–686. doi: 10.1093/bioinformatics/10.6.685. PubMed DOI
Costantini LM, Irvin SC, Kennedy SC, Guo F, Goldstein H, Herold BC, Snapp EL. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays. Virology. 2015;476:240–248. doi: 10.1016/j.virol.2014.12.019. PubMed DOI PMC
da Silva JX, Franco OL, Lemos MA, Gondim MV, Prosdocimi F, Argañaraz ER. Sequence variations of Env signal peptide alleles in different clinical stages of HIV infection. Peptides. 2011;32:1800–1806. doi: 10.1016/j.peptides.2011.07.014. PubMed DOI
Daniels R, Kurowski B, Johnson AE, Hebert DN. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Molecular Cell. 2003;11:79–90. doi: 10.1016/S1097-2765(02)00821-3. PubMed DOI
De Bona P, Deshmukh L, Gorbatyuk V, Vinogradova O, Kendall DA. Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: the stabilizing effect of membrane-mimetics on the acquired fold. Proteins: Structure, Function, and Bioinformatics. 2012;80:807–817. doi: 10.1002/prot.23238. PubMed DOI PMC
Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992;358:761–764. doi: 10.1038/358761a0. PubMed DOI
Do H, Falcone D, Lin J, Andrews DW, Johnson AE. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell. 1996;85:369–378. doi: 10.1016/S0092-8674(00)81115-0. PubMed DOI
Earl PL, Doms RW, Moss B. Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. PNAS. 1990;87:648–652. doi: 10.1073/pnas.87.2.648. PubMed DOI PMC
Earl PL, Moss B, Doms RW, Folding DRW. Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. Journal of Virology. 1991;65:2047–2055. PubMed PMC
Eggink D, Baldwin CE, Deng Y, Langedijk JP, Lu M, Sanders RW, Berkhout B. Selection of T1249-resistant human immunodeficiency virus type 1 variants. Journal of Virology. 2008;82:6678–6688. doi: 10.1128/JVI.00352-08. PubMed DOI PMC
Fluhrer R, Martin L, Klier B, Haug-Kröper M, Grammer G, Nuscher B, Haass C. The α-helical content of the transmembrane domain of the British dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b) Journal of Biological Chemistry. 2012;287:5156–5163. doi: 10.1074/jbc.M111.328104. PubMed DOI PMC
Garces F, Lee JH, de Val N, de la Pena AT, Kong L, Puchades C, Hua Y, Stanfield RL, Burton DR, Moore JP, Sanders RW, Ward AB, Wilson IA. Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity. 2015;43:1053–1063. doi: 10.1016/j.immuni.2015.11.007. PubMed DOI PMC
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. PubMed DOI
Gilmore R. Protein translocation across the endoplasmic reticulum: a tunnel with toll booths at entry and exit. Cell. 1993;75:589–592. doi: 10.1016/0092-8674(93)90476-7. PubMed DOI
Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen T, Gaschen B, Krishnamoorthy M, Li H, Decker JM, Salazar-Gonzalez JF, Wang S, Jiang C, Gao F, Swanstrom R, Anderson JA, Ping LH, Cohen MS, Markowitz M, Goepfert PA, Saag MS, Eron JJ, Hicks CB, Blattner WA, Tomaras GD, Asmal M, Letvin NL, Gilbert PB, Decamp AC, Magaret CA, Schief WR, Ban YE, Zhang M, Soderberg KA, Sodroski JG, Haynes BF, Shaw GM, Hahn BH, Korber B. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathogens. 2011;7:e1002209. doi: 10.1371/journal.ppat.1002209. PubMed DOI PMC
Gogala M, Becker T, Beatrix B, Armache JP, Barrio-Garcia C, Berninghausen O, Beckmann R. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature. 2014;506:107–110. doi: 10.1038/nature12950. PubMed DOI
Görlich D, Hartmann E, Prehn S, Rapoport TA. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature. 1992;357:47–52. doi: 10.1038/357047a0. PubMed DOI
Hebert DN, Foellmer B, Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO Journal. 1996;15:2961–2968. PubMed PMC
Hegde RS, Bernstein HD. The surprising complexity of signal sequences. Trends in Biochemical Sciences. 2006;31:563–571. doi: 10.1016/j.tibs.2006.08.004. PubMed DOI
Hegde RS, Voigt S, Lingappa VR. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Molecular Cell. 1998;2:85–91. doi: 10.1016/S1097-2765(00)80116-1. PubMed DOI
Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature. 2007;450:1026–1030. doi: 10.1038/nature06387. PubMed DOI
Higy M, Junne T, Spiess M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry. 2004;43:12716–12722. doi: 10.1021/bi048368m. PubMed DOI
Hoelen H, Kleizen B, Schmidt A, Richardson J, Charitou P, Thomas PJ, Braakman I. The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain. PLoS One. 2010;5:e15458. doi: 10.1371/journal.pone.0015458. PubMed DOI PMC
Hofmann K, Stoffel W. TMbase - A database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler. 1993;374
Hou B, Lin PJ, Johnson AE. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Molecular Cell. 2012;48:398–408. doi: 10.1016/j.molcel.2012.08.023. PubMed DOI PMC
Hubbard SJ, Campbell SF, Thornton JM. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. Journal of Molecular Biology. 1991;220:507–530. doi: 10.1016/0022-2836(91)90027-4. PubMed DOI
Jackson RC, Blobel G. Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity. PNAS. 1977;74:5598–5602. doi: 10.1073/pnas.74.12.5598. PubMed DOI PMC
Jain RG, Rusch SL, Kendall DA. Signal peptide cleavage regions. Functional limits on length and topological implications. Journal of Biological Chemistry. 1994;269:16305–16310. PubMed
Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA, Hayer-Hartl M, Hartl FU, Barral JM. Real-time observation of trigger factor function on translating ribosomes. Nature. 2006;444:455–460. doi: 10.1038/nature05225. PubMed DOI
Kaiser CM, Goldman DH, Chodera JD, Tinoco I, Bustamante C. The ribosome modulates nascent protein folding. Science. 2011;334:1723–1727. doi: 10.1126/science.1209740. PubMed DOI PMC
Kang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, Hegde RS. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell. 2006;127:999–1013. doi: 10.1016/j.cell.2006.10.032. PubMed DOI PMC
Karamyshev AL, Patrick AE, Karamysheva ZN, Griesemer DS, Hudson H, Tjon-Kon-Sang S, Nilsson I, Otto H, Liu Q, Rospert S, von Heijne G, Johnson AE, Thomas PJ. Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell. 2014;156:146–157. doi: 10.1016/j.cell.2013.12.017. PubMed DOI PMC
Kazanov MD, Igarashi Y, Eroshkin AM, Cieplak P, Ratnikov B, Zhang Y, Li Z, Godzik A, Osterman AL, Smith JW. Structural determinants of limited proteolysis. Journal of Proteome Research. 2011;10:3642–3651. doi: 10.1021/pr200271w. PubMed DOI PMC
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research. 2004;32:W526–W531. doi: 10.1093/nar/gkh468. PubMed DOI PMC
Klasse PJ. Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Virology. 2007;369:245–262. doi: 10.1016/j.virol.2007.06.044. PubMed DOI PMC
Kleizen B, van Vlijmen T, de Jonge HR, Braakman I. Folding of CFTR is predominantly cotranslational. Molecular Cell. 2005;20:277–287. doi: 10.1016/j.molcel.2005.09.007. PubMed DOI
Kowarik M, Küng S, Martoglio B, Helenius A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Molecular Cell. 2002;10:769–778. doi: 10.1016/S1097-2765(02)00685-8. PubMed DOI
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Kurzchalia TV, Wiedmann M, Girshovich AS, Bochkareva ES, Bielka H, Rapoport TA. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature. 1986;320:634–636. doi: 10.1038/320634a0. PubMed DOI
Land A, Braakman I. Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie. 2001;83:783–790. doi: 10.1016/S0300-9084(01)01314-1. PubMed DOI
Land A, Zonneveld D, Braakman I. Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage. The FASEB Journal. 2003;17:1058–1067. doi: 10.1096/fj.02-0811com. PubMed DOI
Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell. 1987;50:975–985. doi: 10.1016/0092-8674(87)90524-1. PubMed DOI
Lee HC, Bernstein HD. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. PNAS. 2001;98:3471–3476. doi: 10.1073/pnas.051484198. PubMed DOI PMC
Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 2016;531:395–399. doi: 10.1038/nature17163. PubMed DOI PMC
Li P, Beckwith J, Inouye H. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. PNAS. 1988;85:7685–7689. doi: 10.1073/pnas.85.20.7685. PubMed DOI PMC
Li Y, Bergeron JJ, Luo L, Ou WJ, Thomas DY, Kang CY. Effects of inefficient cleavage of the signal sequence of HIV-1 gp 120 on its association with calnexin, folding, and intracellular transport. PNAS. 1996;93:9606–9611. doi: 10.1073/pnas.93.18.9606. PubMed DOI PMC
Li Y, Luo L, Thomas DY, Kang CY. Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences. Virology. 1994;204:266–278. doi: 10.1006/viro.1994.1531. PubMed DOI
Li Y, Luo L, Thomas DY, Kang CY. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology. 2000;272:417–428. doi: 10.1006/viro.2000.0357. PubMed DOI
Liang H, VanValkenburgh C, Chen X, Mullins C, Van Kaer L, Green N, Fang H. Genetic complementation in yeast reveals functional similarities between the catalytic subunits of mammalian signal peptidase complex. Journal of Biological Chemistry. 2003;278:50932–50939. doi: 10.1074/jbc.M307542200. PubMed DOI
Lütcke H, High S, Römisch K, Ashford AJ, Dobberstein B. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO Journal. 1992;11:1543–1551. PubMed PMC
Martoglio B, Dobberstein B. Protein insertion into the membrane of the endoplasmic reticulum: the architecture of the translocation site. Cold Spring Harbor Symposia on Quantitative Biology. 1995;60:41–45. doi: 10.1101/SQB.1995.060.01.007. PubMed DOI
Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides. Trends in Cell Biology. 1998;8:410–415. doi: 10.1016/S0962-8924(98)01360-9. PubMed DOI
Martoglio B, Hofmann MW, Brunner J, Dobberstein B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell. 1995;81:207–214. doi: 10.1016/0092-8674(95)90330-5. PubMed DOI
Moore JP, Jarrett RF. Sensitive ELISA for the gp120 and gp160 surface glycoproteins of HIV-1. AIDS Research and Human Retroviruses. 1988;4:369–379. doi: 10.1089/aid.1988.4.369. PubMed DOI
Moore JP, McKeating JA, Weiss RA, Sattentau QJ. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science. 1990;250:1139–1142. doi: 10.1126/science.2251501. PubMed DOI
Ng DT, Brown JD, Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. Journal of Cell Biology. 1996;134:269–278. PubMed PMC
Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering Design and Selection. 1997;10:1–6. doi: 10.1093/protein/10.1.1. PubMed DOI
Nikonov AV, Snapp E, Lippincott-Schwartz J, Kreibich G. Active translocon complexes labeled with GFP-Dad1 diffuse slowly as large polysome arrays in the endoplasmic reticulum. Journal of Cell Biology. 2002;158:497–506. doi: 10.1083/jcb.200201116. PubMed DOI PMC
Nilsson IM, von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. Journal of Biological Chemistry. 1993;268:5798–5801. PubMed
Novotný J, Bruccoleri RE. Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Letters. 1987;211:185–189. doi: 10.1016/0014-5793(87)81433-3. PubMed DOI
Ott CM, Lingappa VR. Signal sequences influence membrane integration of the prion protein. Biochemistry. 2004;43:11973–11982. doi: 10.1021/bi049156s. PubMed DOI
Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Molecular Biotechnology. 2002;22:051–086. doi: 10.1385/MB:22:1:051. PubMed DOI
Peden K, Emerman M, Montagnier L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology. 1991;185:661–672. doi: 10.1016/0042-6822(91)90537-L. PubMed DOI
Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology. 2009;9:51. doi: 10.1186/1472-6807-9-51. PubMed DOI PMC
Pfeiffer T, Pisch T, Devitt G, Holtkotte D, Bosch V. Effects of signal peptide exchange on HIV-1 glycoprotein expression and viral infectivity in mammalian cells. FEBS Letters. 2006;580:3775–3778. doi: 10.1016/j.febslet.2006.05.070. PubMed DOI
Rehm A, Stern P, Ploegh HL, Tortorella D. Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO Journal. 2001;20:1573–1582. doi: 10.1093/emboj/20.7.1573. PubMed DOI PMC
Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology. 1993;232:584–599. doi: 10.1006/jmbi.1993.1413. PubMed DOI
Rutkowski DT, Ott CM, Polansky JR, Lingappa VR. Signal sequences initiate the pathway of maturation in the endoplasmic reticulum lumen. Journal of Biological Chemistry. 2003;278:30365–30372. doi: 10.1074/jbc.M302117200. PubMed DOI
Sanders RW, Dankers MM, Busser E, Caffrey M, Moore JP, Berkhout B. Evolution of the HIV-1 envelope glycoproteins with a disulfide bond between gp120 and gp41. Retrovirology. 2004;1:3. doi: 10.1186/1742-4690-1-3. PubMed DOI PMC
Sekhar A, Santiago M, Lam HN, Lee JH, Cavagnero S. Transient interactions of a slow-folding protein with the Hsp70 chaperone machinery. Protein Science. 2012;21:1042–1055. doi: 10.1002/pro.2087. PubMed DOI PMC
Shaffer KL, Sharma A, Snapp EL, Hegde RS. Regulation of protein compartmentalization expands the diversity of protein function. Developmental Cell. 2005;9:545–554. doi: 10.1016/j.devcel.2005.09.001. PubMed DOI
Sherman MY, Qian SB. Less is more: improving proteostasis by translation slow down. Trends in Biochemical Sciences. 2013;38:585–591. doi: 10.1016/j.tibs.2013.09.003. PubMed DOI
Siggia ED, Lippincott-Schwartz J, Bekiranov S. Diffusion in inhomogeneous media: theory and simulations applied to whole cell photobleach recovery. Biophysical Journal. 2000;79:1761–1770. doi: 10.1016/S0006-3495(00)76428-9. PubMed DOI PMC
Snapp EL, Altan N, Lippincott-Schwartz J. Measuring protein mobility by photobleaching GFP chimeras in living cells. Current rotocols in ell iology. 2003;Chapter 21:Unit 21.1. doi: 10.1002/0471143030.cb2101s19. PubMed DOI
Snapp EL, Sharma A, Lippincott-Schwartz J, Hegde RS. Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. PNAS. 2006;103:6536–6541. doi: 10.1073/pnas.0510657103. PubMed DOI PMC
Soler MA, Faísca PF. How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments. PLoS One. 2012;7:e52343. doi: 10.1371/journal.pone.0052343. PubMed DOI PMC
Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings. International Conference on Intelligent Systems for Molecular Biology. 1998;6:175–182. PubMed
Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine. 2012;2:a006924. doi: 10.1101/cshperspect.a006924. PubMed DOI PMC
Szabady RL, Peterson JH, Skillman KM, Bernstein HD. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. PNAS. 2005;102:221–226. doi: 10.1073/pnas.0406055102. PubMed DOI PMC
Timmer JC, Zhu W, Pop C, Regan T, Snipas SJ, Eroshkin AM, Riedl SJ, Salvesen GS. Structural and kinetic determinants of protease substrates. Nature Structural & Molecular Biology. 2009;16:1101–1108. doi: 10.1038/nsmb.1668. PubMed DOI PMC
Tusnády GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. Journal of Molecular Biology. 1998;283:489–506. doi: 10.1006/jmbi.1998.2107. PubMed DOI
Tusnády GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17:849–850. doi: 10.1093/bioinformatics/17.9.849. PubMed DOI
Valent QA, de Gier JW, von Heijne G, Kendall DA, ten Hagen-Jongman CM, Oudega B, Luirink J. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Molecular Microbiology. 1997;25:53–64. doi: 10.1046/j.1365-2958.1997.4431808.x. PubMed DOI
van Anken E, Sanders RW, Liscaljet IM, Land A, Bontjer I, Tillemans S, Nabatov AA, Paxton WA, Berkhout B, Braakman I. Only five of 10 strictly conserved disulfide bonds are essential for folding and eight for function of the HIV-1 envelope glycoprotein. Molecular Biology of the Cell. 2008;19:4298–4309. doi: 10.1091/mbc.E07-12-1282. PubMed DOI PMC
von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry. 1983;133:17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. PubMed DOI
von Heijne G. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO Journal. 1984;3:2315–2318. PubMed PMC
von Heijne G. Signal sequences. The limits of variation. Journal of Molecular Biology. 1985;184:99–105. PubMed
von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. Journal of Molecular Biology. 1992;225:487–494. PubMed
Voorhees RM, Fernández IS, Scheres SH, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell. 2014;157:1632–1643. doi: 10.1016/j.cell.2014.05.024. PubMed DOI PMC
Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. Journal of Cell Biology. 1981;91:557–561. doi: 10.1083/jcb.91.2.557. PubMed DOI PMC
Wei J, Gibbs JS, Hickman HD, Cush SS, Bennink JR, Yewdell JW. Ubiquitous Autofragmentation of Fluorescent Proteins Creates Abundant Defective Ribosomal Products (DRiPs) for Immunosurveillance. Journal of Biological Chemistry. 2015;290:16431–16439. doi: 10.1074/jbc.M115.658062. PubMed DOI PMC
Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrobial Agents and Chemotherapy. 2002;46:1896–1905. doi: 10.1128/AAC.46.6.1896-1905.2002. PubMed DOI PMC
Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002;296:2215–2218. doi: 10.1126/science.1070925. PubMed DOI
Weissman JS, Kim PS. Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. PNAS. 1992a;89:9900–9904. doi: 10.1073/pnas.89.20.9900. PubMed DOI PMC
Weissman JS, Kim PS. The pro region of BPTI facilitates folding. Cell. 1992b;71:841–851. doi: 10.1016/0092-8674(92)90559-U. PubMed DOI
Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD, Biosynthesis KRD. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. PNAS. 1988;85:9580–9584. doi: 10.1073/pnas.85.24.9580. PubMed DOI PMC
Zhu P, Liu J, Bess J, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006;441:847–852. doi: 10.1038/nature04817. PubMed DOI