Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II) and Lead(II) from Soils
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28792458
PubMed Central
PMC5579481
DOI
10.3390/s17081835
PII: s17081835
Knihovny.cz E-zdroje
- Klíčová slova
- amalgam electrodes, electrochemistry, heavy metals, soil, turbid sample,
- Publikační typ
- časopisecké články MeSH
Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm² that can be varied as required for analysis. The LODs were 80 ng·mL-1 for Cd(II) and 50 ng·mL-1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO₃ environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.
Zobrazit více v PubMed
Sun H.F., Li Y.H., Ji Y.F., Yang L.S., Wang W.Y., Li H. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Trans. Nonferr. Met. Soc. China. 2010;20:308–314. doi: 10.1016/S1003-6326(09)60139-4. DOI
Petroczi A., Naughton D.P. Mercury, cadmium and lead contamination in seafood: A comparative study to evaluate the usefulness of Target Hazard Quotients. Food Chem. Toxicol. 2009;47:298–302. doi: 10.1016/j.fct.2008.11.007. PubMed DOI
Zhang R., Rahman S., Vance G.F. Munn LC Geostatistical analyses of trace-elements in soils and plants. Soil Sci. 1995;159:383–390. doi: 10.1097/00010694-199506000-00003. DOI
Nejdl L., Nguyen H.V., Richtera L., Krizkova S., Guran R., Masarik M., Hynek D., Heger Z., Lundberg K., Erikson K., et al. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis. 2015;36:1894–1904. doi: 10.1002/elps.201500069. PubMed DOI
Lamble K.J., Hill S.J. Microwave digestion procedures for environmental matrices. Analyst. 1998;123 doi: 10.1039/a800776d. DOI
Alves G.M.S., Magalhaes J., Salaun P., van den Berg C.M.G., Soares H. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal. Chim. Acta. 2011;703:1–7. doi: 10.1016/j.aca.2011.07.022. PubMed DOI
Nejdl L., Ruttkay-Nedecky B., Kudr J., Kremplova M., Cernei N., Prasek J., Konecna M., Hubalek J., Zitka O., Kynicky J., et al. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry. Sensors. 2013;13:14417–14437. doi: 10.3390/s131114417. PubMed DOI PMC
Hynek D., Krejcova L., Sochor J., Cernei N., Kynicky J., Adam V., Trnkova L., Hubalek J., Vrba R., Kizek R. Study of Interactions between Cysteine and Cadmium(II) Ions using Automatic Pipetting System off-line Coupled with Electrochemical Analyser Dedicated United Nation Environment Program: Lead and Cadmium Initiatives. Int. J. Electrochem. Sci. 2012;7:1802–1819.
Barcelo-Quintal M.H., Manzanilla-Cano J.A., Reyes-Salas E.O., Flores-Rodriguez J. Implementation of a differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode (HMDE) procedure for the analysis of airborne heavy metals. Anal. Lett. 2001;34:2349–2360. doi: 10.1081/AL-100107300. DOI
Fernandez-Bobes C., Fernandez-Abedul M.T., Costa-Garcia A. Anodic stripping of heavy metals using a hanging mercury drop electrode in a flow system. Electroanalysis. 1998;10:701–706. doi: 10.1002/(SICI)1521-4109(199808)10:10<701::AID-ELAN701>3.0.CO;2-I. DOI
Fogg A.G., Ismail R., Yusoff A., Ahmad R., Banica F.G. Cathodic stripping voltammetric determination at a hanging mercury drop electrode of the environmental heavy metal precipitant trimercapto-s-triazine (TMT) Talanta. 1997;44:497–500. doi: 10.1016/S0039-9140(96)02073-5. PubMed DOI
Economou A., Fielden P.R. Mercury film electrodes: Developments, trends and potentialities for electroanalysis. Analyst. 2003;128:205–212. doi: 10.1039/b201130c. PubMed DOI
McCreery R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008;108:2646–2687. doi: 10.1021/cr068076m. PubMed DOI
Oyama M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis. Anal. Sci. 2010;26:1–12. doi: 10.2116/analsci.26.1. PubMed DOI
Nelson G.W., Foord J.S. Nanoparticle-Based Diamond Electrodes. In: Yang N., editor. Novel Aspects of Diamond: From Growth to Applications. Springer; Berlin, Germany: 2015. pp. 165–204.
Amato L., Schulte L., Heiskanen A., Keller S.S., Ndoni S., Emnéus J. Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials. Electroanalysis. 2015;27:1544–1549. doi: 10.1002/elan.201400430. DOI
Ramachandran R., Chen S.M., Kumar G.P.G., Gajendran P., Devi N.B. An Overview of Fabricating Nanostructured Electrode Materials for Biosensor Applications. Int. J. Electrochem. Sci. 2015;10:8607–8629.
Hao C., Shen Y.R., Shen J.X., Xu K.Y., Wang X.H., Zhao Y., Ge C. A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II) Microchim. Acta. 2016;183:1823–1830. doi: 10.1007/s00604-016-1816-5. DOI
Yang D., Wang L., Chen Z.L., Megharaj M., Naidu R. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta. 2014;181:1199–1206. doi: 10.1007/s00604-014-1235-4. DOI
Do Nascimento M.E., Martelli P.B., Furtado C.A., Santos A.P., de Oliveira L.F.C., de Fátima Gorgulho H. Determination of lead(II) in aqueous solution using carbon nanotubes paste electrodes modified with Amberlite IR-120. Microchim. Acta. 2011;173:485–493. doi: 10.1007/s00604-011-0583-6. DOI
Vanderlinden W.E., Dieker J.W. Glassy-carbon as electrode material in electroanalytical chemistry. Anal. Chim. Acta. 1980;119:1–24. doi: 10.1016/S0003-2670(00)00025-8. DOI
Svancara I., Vytras K., Barek J., Zima J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001;31:311–345. doi: 10.1080/20014091076785. DOI
Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem. 2008;63:922–942. doi: 10.1134/S106193480810002X. DOI
Tallman D.E., Petersen S.L. Composite electrodes for electroanalysis—Principles and applications. Electroanalysis. 1990;2:499–510. doi: 10.1002/elan.1140020702. DOI
Green R.A., Baek S., Poole-Warren L.A., Martens P.J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 2010;11 doi: 10.1088/1468-6996/11/1/014107. PubMed DOI PMC
Liu T.T., Shao G.J., Ji M.T., Ma Z.P. Research Progress in Nano-Structured MnO2 as Electrode Materials for Supercapacitors. Asian J. Chem. 2013;25:7065–7070.
Xu J.H., Wang Y.Z., Hu S.S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta. 2017;184:1–44. doi: 10.1007/s00604-016-2007-0. DOI
Dos Santos V.B., Fava E.L., Curi N.S.D., Faria R.C., Guerreiro T.B., Fatibello-Filho O. An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system. Anal. Methods. 2015;7:3105–3112. doi: 10.1039/C5AY00012B. DOI
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Žalud L., Kopecný L., Burian F., Ruttkay-Nedecký B., Prášek J., et al. Remote-controlled robotic platform Orpheus as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI
Barton J., Garcia M.B.G., Santos D.H., Fanjul-Bolado P., Ribotti A., McCaul M., Diamond D., Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta. 2016;183:503–517. doi: 10.1007/s00604-015-1651-0. DOI
Li M., Li Y.T., Li D.W., Long Y.T. Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta. 2012;734:31–44. doi: 10.1016/j.aca.2012.05.018. PubMed DOI
Yosypchuk B., Novotny L. Nontoxic electrodes of solid amalgams. Crit. Rev. Anal. Chem. 2002;32:141–151. doi: 10.1080/10408340290765498. DOI
Mikkelsen O., Schroder K.H. Amalgam electrodes for electroanalysis. Electroanalysis. 2003;15:679–687. doi: 10.1002/elan.200390085. DOI
Yosypchuk B., Novotny L. Copper solid amalgam electrodes. Electroanalysis. 2003;15:121–125. doi: 10.1002/elan.200390012. DOI
Yosypchuk B., Barek J. Analytical Applications of Solid and Paste Amalgam Electrodes. Crit. Rev. Anal. Chem. 2009;39:189–203. doi: 10.1080/10408340903011838. DOI
Jelen F., Yosypchuk B., Kourilova A., Novotny L., Palecek E. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal. Chem. 2002;74:4788–4793. doi: 10.1021/ac0200771. PubMed DOI
Novakova K., Navratil T., Dytrtova J.J., Chylkova J. Xxxii Moderni Elektrochemicke Metody. J. Heyrovsky Institute of Physical Chemistry AS ČR; Prague, Czech Republic: 2012. Use of Copper Solid Amalgam Electrode for Determination of Triazolic Fungicide Tebuconazole; pp. 87–90.
De Souza D., de Toledo R.A., Mazo L.H., Machado S.A.S. Utilization of a copper solid amalgam electrode for the analytical determination of atrazine. Electroanalysis. 2005;17:2090–2094. doi: 10.1002/elan.200503331. DOI
Yosypchuk B., Sestakova I., Novotny L. Voltammetric determination of phytochelatins using copper solid amalgam electrode. Talanta. 2003;59:1253–1258. doi: 10.1016/S0039-9140(03)00023-7. PubMed DOI
Zhao G., Wang H., Liu G. Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode. Int. J. Electrochem. Sci. 2016;11:1840–1851.
Zhao G., Wang H., Liu G., Wang Z.Q., Cheng J. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics. 2017;23:767–777. doi: 10.1007/s11581-016-1843-6. DOI
Aragay G., Puig-Font A., Cadevall M., Merkoci A. Surface Characterizations of Mercury-Based Electrodes with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained Sensitivity and Faced Nonstability in Heavy Metal Detection. J. Phys. Chem. C. 2010;114:9049–9055. doi: 10.1021/jp102123w. DOI
Golimowski J., Golimowska K. UV-photooxidation as pretreatment step in inorganic analysis of environmental samples. Anal. Chim. Acta. 1996;325:111–133. doi: 10.1016/0003-2670(96)00034-7. DOI
Nascimento P.C., Del-Fabro L.D., Bohrer D., De Carvalho L.M., Rosa M.B., Noremberg S.M. Al(III) and Fe(III) Balance in Hemodialysis Treatment Assessed via Fluid Analysis by Adsorptive Stripping Voltammetry and UV Sample Digestion. Electroanalysis. 2008;20:1078–1084. doi: 10.1002/elan.200704155. DOI
Baccaro A.L.B., Gutz I.G.R. Novel photoelectrocatalytic approach aiming at the digestion of water samples, estimation of organic matter content and stripping analysis of metals in a special UV-LED irradiated cell with a TiO2-modified gold electrode. Electrochem. Commun. 2013;31:28–30. doi: 10.1016/j.elecom.2013.03.001. DOI
Li X.Z., Li F.B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 2001;35:2381–2387. doi: 10.1021/es001752w. PubMed DOI
Pekakis P.A., Xekoukoulotakis N.P., Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006;40:1276–1286. doi: 10.1016/j.watres.2006.01.019. PubMed DOI
Wuana R.A., Okieimen F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011;2011:1–20. doi: 10.5402/2011/402647. DOI
Perez-Sirvent C., Martinez-Sanchez M.J., Garcia-Lorenzo M.L., Molina J., Tudela M.L. Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain) Geoderma. 2009;148:307–317. doi: 10.1016/j.geoderma.2008.10.017. DOI