Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II) and Lead(II) from Soils

. 2017 Aug 09 ; 17 (8) : . [epub] 20170809

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28792458

Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm² that can be varied as required for analysis. The LODs were 80 ng·mL-1 for Cd(II) and 50 ng·mL-1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO₃ environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.

Zobrazit více v PubMed

Sun H.F., Li Y.H., Ji Y.F., Yang L.S., Wang W.Y., Li H. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Trans. Nonferr. Met. Soc. China. 2010;20:308–314. doi: 10.1016/S1003-6326(09)60139-4. DOI

Petroczi A., Naughton D.P. Mercury, cadmium and lead contamination in seafood: A comparative study to evaluate the usefulness of Target Hazard Quotients. Food Chem. Toxicol. 2009;47:298–302. doi: 10.1016/j.fct.2008.11.007. PubMed DOI

Zhang R., Rahman S., Vance G.F. Munn LC Geostatistical analyses of trace-elements in soils and plants. Soil Sci. 1995;159:383–390. doi: 10.1097/00010694-199506000-00003. DOI

Nejdl L., Nguyen H.V., Richtera L., Krizkova S., Guran R., Masarik M., Hynek D., Heger Z., Lundberg K., Erikson K., et al. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis. 2015;36:1894–1904. doi: 10.1002/elps.201500069. PubMed DOI

Lamble K.J., Hill S.J. Microwave digestion procedures for environmental matrices. Analyst. 1998;123 doi: 10.1039/a800776d. DOI

Alves G.M.S., Magalhaes J., Salaun P., van den Berg C.M.G., Soares H. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal. Chim. Acta. 2011;703:1–7. doi: 10.1016/j.aca.2011.07.022. PubMed DOI

Nejdl L., Ruttkay-Nedecky B., Kudr J., Kremplova M., Cernei N., Prasek J., Konecna M., Hubalek J., Zitka O., Kynicky J., et al. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry. Sensors. 2013;13:14417–14437. doi: 10.3390/s131114417. PubMed DOI PMC

Hynek D., Krejcova L., Sochor J., Cernei N., Kynicky J., Adam V., Trnkova L., Hubalek J., Vrba R., Kizek R. Study of Interactions between Cysteine and Cadmium(II) Ions using Automatic Pipetting System off-line Coupled with Electrochemical Analyser Dedicated United Nation Environment Program: Lead and Cadmium Initiatives. Int. J. Electrochem. Sci. 2012;7:1802–1819.

Barcelo-Quintal M.H., Manzanilla-Cano J.A., Reyes-Salas E.O., Flores-Rodriguez J. Implementation of a differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode (HMDE) procedure for the analysis of airborne heavy metals. Anal. Lett. 2001;34:2349–2360. doi: 10.1081/AL-100107300. DOI

Fernandez-Bobes C., Fernandez-Abedul M.T., Costa-Garcia A. Anodic stripping of heavy metals using a hanging mercury drop electrode in a flow system. Electroanalysis. 1998;10:701–706. doi: 10.1002/(SICI)1521-4109(199808)10:10<701::AID-ELAN701>3.0.CO;2-I. DOI

Fogg A.G., Ismail R., Yusoff A., Ahmad R., Banica F.G. Cathodic stripping voltammetric determination at a hanging mercury drop electrode of the environmental heavy metal precipitant trimercapto-s-triazine (TMT) Talanta. 1997;44:497–500. doi: 10.1016/S0039-9140(96)02073-5. PubMed DOI

Economou A., Fielden P.R. Mercury film electrodes: Developments, trends and potentialities for electroanalysis. Analyst. 2003;128:205–212. doi: 10.1039/b201130c. PubMed DOI

McCreery R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008;108:2646–2687. doi: 10.1021/cr068076m. PubMed DOI

Oyama M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis. Anal. Sci. 2010;26:1–12. doi: 10.2116/analsci.26.1. PubMed DOI

Nelson G.W., Foord J.S. Nanoparticle-Based Diamond Electrodes. In: Yang N., editor. Novel Aspects of Diamond: From Growth to Applications. Springer; Berlin, Germany: 2015. pp. 165–204.

Amato L., Schulte L., Heiskanen A., Keller S.S., Ndoni S., Emnéus J. Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials. Electroanalysis. 2015;27:1544–1549. doi: 10.1002/elan.201400430. DOI

Ramachandran R., Chen S.M., Kumar G.P.G., Gajendran P., Devi N.B. An Overview of Fabricating Nanostructured Electrode Materials for Biosensor Applications. Int. J. Electrochem. Sci. 2015;10:8607–8629.

Hao C., Shen Y.R., Shen J.X., Xu K.Y., Wang X.H., Zhao Y., Ge C. A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II) Microchim. Acta. 2016;183:1823–1830. doi: 10.1007/s00604-016-1816-5. DOI

Yang D., Wang L., Chen Z.L., Megharaj M., Naidu R. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta. 2014;181:1199–1206. doi: 10.1007/s00604-014-1235-4. DOI

Do Nascimento M.E., Martelli P.B., Furtado C.A., Santos A.P., de Oliveira L.F.C., de Fátima Gorgulho H. Determination of lead(II) in aqueous solution using carbon nanotubes paste electrodes modified with Amberlite IR-120. Microchim. Acta. 2011;173:485–493. doi: 10.1007/s00604-011-0583-6. DOI

Vanderlinden W.E., Dieker J.W. Glassy-carbon as electrode material in electroanalytical chemistry. Anal. Chim. Acta. 1980;119:1–24. doi: 10.1016/S0003-2670(00)00025-8. DOI

Svancara I., Vytras K., Barek J., Zima J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001;31:311–345. doi: 10.1080/20014091076785. DOI

Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem. 2008;63:922–942. doi: 10.1134/S106193480810002X. DOI

Tallman D.E., Petersen S.L. Composite electrodes for electroanalysis—Principles and applications. Electroanalysis. 1990;2:499–510. doi: 10.1002/elan.1140020702. DOI

Green R.A., Baek S., Poole-Warren L.A., Martens P.J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 2010;11 doi: 10.1088/1468-6996/11/1/014107. PubMed DOI PMC

Liu T.T., Shao G.J., Ji M.T., Ma Z.P. Research Progress in Nano-Structured MnO2 as Electrode Materials for Supercapacitors. Asian J. Chem. 2013;25:7065–7070.

Xu J.H., Wang Y.Z., Hu S.S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta. 2017;184:1–44. doi: 10.1007/s00604-016-2007-0. DOI

Dos Santos V.B., Fava E.L., Curi N.S.D., Faria R.C., Guerreiro T.B., Fatibello-Filho O. An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system. Anal. Methods. 2015;7:3105–3112. doi: 10.1039/C5AY00012B. DOI

Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Žalud L., Kopecný L., Burian F., Ruttkay-Nedecký B., Prášek J., et al. Remote-controlled robotic platform Orpheus as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI

Barton J., Garcia M.B.G., Santos D.H., Fanjul-Bolado P., Ribotti A., McCaul M., Diamond D., Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta. 2016;183:503–517. doi: 10.1007/s00604-015-1651-0. DOI

Li M., Li Y.T., Li D.W., Long Y.T. Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta. 2012;734:31–44. doi: 10.1016/j.aca.2012.05.018. PubMed DOI

Yosypchuk B., Novotny L. Nontoxic electrodes of solid amalgams. Crit. Rev. Anal. Chem. 2002;32:141–151. doi: 10.1080/10408340290765498. DOI

Mikkelsen O., Schroder K.H. Amalgam electrodes for electroanalysis. Electroanalysis. 2003;15:679–687. doi: 10.1002/elan.200390085. DOI

Yosypchuk B., Novotny L. Copper solid amalgam electrodes. Electroanalysis. 2003;15:121–125. doi: 10.1002/elan.200390012. DOI

Yosypchuk B., Barek J. Analytical Applications of Solid and Paste Amalgam Electrodes. Crit. Rev. Anal. Chem. 2009;39:189–203. doi: 10.1080/10408340903011838. DOI

Jelen F., Yosypchuk B., Kourilova A., Novotny L., Palecek E. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal. Chem. 2002;74:4788–4793. doi: 10.1021/ac0200771. PubMed DOI

Novakova K., Navratil T., Dytrtova J.J., Chylkova J. Xxxii Moderni Elektrochemicke Metody. J. Heyrovsky Institute of Physical Chemistry AS ČR; Prague, Czech Republic: 2012. Use of Copper Solid Amalgam Electrode for Determination of Triazolic Fungicide Tebuconazole; pp. 87–90.

De Souza D., de Toledo R.A., Mazo L.H., Machado S.A.S. Utilization of a copper solid amalgam electrode for the analytical determination of atrazine. Electroanalysis. 2005;17:2090–2094. doi: 10.1002/elan.200503331. DOI

Yosypchuk B., Sestakova I., Novotny L. Voltammetric determination of phytochelatins using copper solid amalgam electrode. Talanta. 2003;59:1253–1258. doi: 10.1016/S0039-9140(03)00023-7. PubMed DOI

Zhao G., Wang H., Liu G. Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode. Int. J. Electrochem. Sci. 2016;11:1840–1851.

Zhao G., Wang H., Liu G., Wang Z.Q., Cheng J. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics. 2017;23:767–777. doi: 10.1007/s11581-016-1843-6. DOI

Aragay G., Puig-Font A., Cadevall M., Merkoci A. Surface Characterizations of Mercury-Based Electrodes with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained Sensitivity and Faced Nonstability in Heavy Metal Detection. J. Phys. Chem. C. 2010;114:9049–9055. doi: 10.1021/jp102123w. DOI

Golimowski J., Golimowska K. UV-photooxidation as pretreatment step in inorganic analysis of environmental samples. Anal. Chim. Acta. 1996;325:111–133. doi: 10.1016/0003-2670(96)00034-7. DOI

Nascimento P.C., Del-Fabro L.D., Bohrer D., De Carvalho L.M., Rosa M.B., Noremberg S.M. Al(III) and Fe(III) Balance in Hemodialysis Treatment Assessed via Fluid Analysis by Adsorptive Stripping Voltammetry and UV Sample Digestion. Electroanalysis. 2008;20:1078–1084. doi: 10.1002/elan.200704155. DOI

Baccaro A.L.B., Gutz I.G.R. Novel photoelectrocatalytic approach aiming at the digestion of water samples, estimation of organic matter content and stripping analysis of metals in a special UV-LED irradiated cell with a TiO2-modified gold electrode. Electrochem. Commun. 2013;31:28–30. doi: 10.1016/j.elecom.2013.03.001. DOI

Li X.Z., Li F.B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 2001;35:2381–2387. doi: 10.1021/es001752w. PubMed DOI

Pekakis P.A., Xekoukoulotakis N.P., Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006;40:1276–1286. doi: 10.1016/j.watres.2006.01.019. PubMed DOI

Wuana R.A., Okieimen F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011;2011:1–20. doi: 10.5402/2011/402647. DOI

Perez-Sirvent C., Martinez-Sanchez M.J., Garcia-Lorenzo M.L., Molina J., Tudela M.L. Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain) Geoderma. 2009;148:307–317. doi: 10.1016/j.geoderma.2008.10.017. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...