• This record comes from PubMed

Host-Guest Interactions in Metal-Organic Frameworks Doped with Acceptor Molecules as Revealed by Resonance Raman Spectroscopy

. 2020 Nov 05 ; 124 (44) : 24245-24250. [epub] 20201021

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
P 30431 Austrian Science Fund FWF - Austria

Metal-organic frameworks (MOFs) represent a class of porous materials whose properties can be altered by doping with redox-active molecules. Despite advanced properties such as enhanced electrical conduction that doped MOFs exhibit, understanding physical mechanisms remains challenging because of their heterogeneous nature hindering experimental observations of host-guest interactions. Here, we show a study of charge transfer between Mn-MOF-74 and electron acceptors, 7,7,8,8-tetracyanoquinodimethane (TCNQ) and XeF2, employing selective enhancement of Raman scattering of different moieties under various optical-resonance conditions. We identify Raman modes of molecular components and elucidate that TCNQ gets oxidized into dicyano-p-toluoyl cyanide (DCTC-) while XeF2 fluorinates the MOF upon infiltration. The framework's linker in both cases acts as an electron donor as deduced from blue shifts of the C-O stretching mode accompanied by the emergence of a quinone-like mode. This work demonstrates a generally applicable methodology for investigating charge transfer in various donor-acceptor systems by means of resonance Raman spectroscopy.

See more in PubMed

Stavila V.; Talin A. A.; Allendorf M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010. 10.1039/c4cs00096j. PubMed DOI

Sun L.; Campbell M. G.; Dincă M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566–3579. 10.1002/anie.201506219. PubMed DOI

Stassen I.; Burtch N.; Talin A.; Falcaro P.; Allendorf M.; Ameloot R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. 10.1039/c7cs00122c. PubMed DOI

Campbell M.; Dincă M. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108.10.3390/s17051108. PubMed DOI PMC

Li P.; Wang B. Recent Development and Application of Conductive MOFs. Isr. J. Chem. 2018, 58, 1010–1018. 10.1002/ijch.201800078. DOI

Medina D. D.; Mähringer A.; Bein T. Electroactive Metalorganic Frameworks. Isr. J. Chem. 2018, 58, 1089–1101. 10.1002/ijch.201800110. DOI

Bhardwaj S. K.; Bhardwaj N.; Kaur R.; Mehta J.; Sharma A. L.; Kim K.-H.; Deep A. An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 2018, 6, 14992–15009. 10.1039/c8ta04220a. DOI

Pan L.; Liu G.; Shi W.; Shang J.; Leow W. R.; Liu Y.; Jiang Y.; Li S.; Chen X.; Li R.-W. Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nat. Commun. 2018, 9, 3813.10.1038/s41467-018-06079-3. PubMed DOI PMC

Deng X.; Hu J.-Y.; Luo J.; Liao W.-M.; He J. Conductive Metal-Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Top. Curr. Chem. 2020, 378, 27.10.1007/s41061-020-0289-5. PubMed DOI

Allendorf M. D.; Foster M. E.; Léonard F.; Stavila V.; Feng P. L.; Doty F. P.; Leong K.; Ma E. Y.; Johnston S. R.; Talin A. A. Guest-Induced Emergent Properties in Metal-Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195. 10.1021/jz5026883. PubMed DOI

Talin A. A.; Centrone A.; Ford A. C.; Foster M. E.; Stavila V.; Haney P.; Kinney R. A.; Szalai V.; El Gabaly F.; Yoon H. P.; Léonard F.; Allendorf M. D. Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science 2014, 343, 66–69. 10.1126/science.1246738. PubMed DOI

Erickson K. J.; Léonard F.; Stavila V.; Foster M. E.; Spataru C. D.; Jones R. E.; Foley B. M.; Hopkins P. E.; Allendorf M. D.; Talin A. A. Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Adv. Mater. 2015, 27, 3453–3459. 10.1002/adma.201501078. PubMed DOI

Neumann T.; Liu J.; Wächter T.; Friederich P.; Symalla F.; Welle A.; Mugnaini V.; Meded V.; Zharnikov M.; Wöll C.; Wenzel W. Superexchange Charge Transport in Loaded Metal Organic Frameworks. ACS Nano 2016, 10, 7085–7093. 10.1021/acsnano.6b03226. PubMed DOI

Usov P. M.; Jiang H.; Chevreau H.; Peterson V. K.; Leong C. F.; D’Alessandro D. M. Guest-Host Complexes of TCNQ and TCNE with Cu3(1,3,5-benzenetricarboxylate)2. J. Phys. Chem. Lett. 2017, 121, 26330–26339. 10.1021/acs.jpcc.7b07807. DOI

Bhardwaj S. K.; Sharma A. L.; Bhardwaj N.; Kukkar M.; Gill A. A. S.; Kim K.-H.; Deep A. TCNQ-doped Cu-metal organic framework as a novel conductometric immunosensing platform for the quantification of prostate cancer antigen. Sens. Actuators, B 2017, 240, 10–17. 10.1016/j.snb.2016.08.138. DOI

Chen X.; Wang Z.; Hassan Z. M.; Lin P.; Zhang K.; Baumgart H.; Redel E. Seebeck Coefficient Measurements of Polycrystalline and Highly Ordered Metal-Organic Framework Thin Films. ECS J. Solid State Sci. Technol. 2017, 6, P150–P153. 10.1149/2.0161704jss. DOI

Schneider C.; Ukaj D.; Koerver R.; Talin A. A.; Kieslich G.; Pujari S. P.; Zuilhof H.; Janek J.; Allendorf M. D.; Fischer R. A. High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores. Chem. Sci. 2018, 9, 7405–7412. 10.1039/c8sc02471e. PubMed DOI PMC

Thürmer K.; Schneider C.; Stavila V.; Friddle R. W.; Léonard F.; Fischer R. A.; Allendorf M. D.; Talin A. A. Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ. ACS Appl. Mater. Interfaces 2018, 10, 39400–39410. 10.1021/acsami.8b15158. PubMed DOI

Schneider C.; Bodesheim D.; Ehrenreich M. G.; Crocellà V.; Mink J.; Fischer R. A.; Butler K. T.; Kieslich G. Tuning the Negative Thermal Expansion Behavior of the Metal-Organic Framework Cu3BTC2 by Retrofitting. J. Am. Chem. Soc. 2019, 141, 10504–10509. 10.1021/jacs.9b04755. PubMed DOI

Rivera-Torrente M.; Filez M.; Schneider C.; van der Feltz E. C.; Wolkersdörfer K.; Taffa D. H.; Wark M.; Fischer R. A.; Weckhuysen B. M. Micro-spectroscopy of HKUST-1 metal-organic framework crystals loaded with tetracyanoquinodimethane: effects of water on host-guest chemistry and electrical conductivity. Phys. Chem. Chem. Phys. 2019, 21, 25678–25689. 10.1039/c9cp05082e. PubMed DOI

Schneider C.; Mendt M.; Pöppl A.; Crocellà V.; Fischer R. A. Scrutinizing the Pore Chemistry and the Importance of Cu(I) Defects in TCNQ-Loaded Cu3(BTC)2 by a Multitechnique Spectroscopic Approach. ACS Appl. Mater. Interfaces 2020, 12, 1024–1035. 10.1021/acsami.9b16663. PubMed DOI

Sengupta A.; Datta S.; Su C.; Herng T. S.; Ding J.; Vittal J. J.; Loh K. P. Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Appl. Mater. Interfaces 2016, 8, 16154–16159. 10.1021/acsami.6b03073. PubMed DOI

Huang Q.-Q.; Lin Y.-J.; Zheng R.; Deng W.-H.; Kashi C.; Kumar P. N.; Wang G.-E.; Xu G. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB. Inorg. Chem. Commun. 2019, 105, 119–124. 10.1016/j.inoche.2019.04.037. DOI

Kumar V.; Kaur H.; Tankeshwar K.; Deep A. Computational analysis to study the effect of infusion of tetracyanoquinodimethane in zinc based metal-organic framework. Mater. Res. Express 2020, 7, 015001.10.1088/2053-1591/ab52d5. DOI

Shiozawa H.; Bayer B. C.; Peterlik H.; Meyer J. C.; Lang W.; Pichler T. Doping of metal-organic frameworks towards resistive sensing. Sci. Rep. 2017, 7, 2439.10.1038/s41598-017-02618-y. PubMed DOI PMC

Strauss I.; Mundstock A.; Treger M.; Lange K.; Hwang S.; Chmelik C.; Rusch P.; Bigall N. C.; Pichler T.; Shiozawa H.; Caro J. Metal-Organic Framework Co-MOF-74-Based Host-Guest Composites for Resistive Gas Sensing. ACS Appl. Mater. Interfaces 2019, 11, 14175–14181. 10.1021/acsami.8b22002. PubMed DOI PMC

Rosi N. L.; Kim J.; Eddaoudi M.; Chen B.; O’Keeffe M.; Yaghi O. M. Rod Packings and Metal–Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1518. 10.1021/ja045123o. PubMed DOI

Valenzano L.; Civalleri B.; Chavan S.; Palomino G. T.; Areán C. O.; Bordiga S. Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74. J. Phys. Chem. Lett. 2010, 114, 11185–11191. 10.1021/jp102574f. DOI

Tan K.; Zuluaga S.; Gong Q.; Canepa P.; Wang H.; Li J.; Chabal Y. J.; Thonhauser T. Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. Chem. Mater. 2014, 26, 6886–6895. 10.1021/cm5038183. DOI

Haldoupis E.; Borycz J.; Shi H.; Vogiatzis K. D.; Bai P.; Queen W. L.; Gagliardi L.; Siepmann J. I. Ab Initio Derived Force Fields for Predicting CO2 Adsorption and Accessibility of Metal Sites in the Metal-Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu). J. Phys. Chem. Lett. 2015, 119, 16058–16071. 10.1021/acs.jpcc.5b03700. DOI

Lee K.; Howe J. D.; Lin L.-C.; Smit B.; Neaton J. B. Small-Molecule Adsorption in Open-Site Metal-Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015, 27, 668–678. 10.1021/cm502760q. DOI

Zuluaga S.; Fuentes-Fernandez E. M. A.; Tan K.; Xu F.; Li J.; Chabal Y. J.; Thonhauser T. Understanding and controlling water stability of MOF-74. J. Mater. Chem. A 2016, 4, 5176–5183. 10.1039/c5ta10416e. DOI

Jiang H.; Wang Q.; Wang H.; Chen Y.; Zhang M. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2016, 8, 26817–26826. 10.1021/acsami.6b08851. PubMed DOI

Suh B. L.; Lee S.; Kim J. Size-Matching Ligand Insertion in MOF-74 for Enhanced CO2 Capture under Humid Conditions. J. Phys. Chem. Lett. 2017, 121, 24444–24451. 10.1021/acs.jpcc.7b08239. DOI

Tan K.; Zuluaga S.; Wang H.; Canepa P.; Soliman K.; Cure J.; Li J.; Thonhauser T.; Chabal Y. J. Interaction of Acid Gases SO2 and NO2 with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chem. Mater. 2017, 29, 4227–4235. 10.1021/acs.chemmater.7b00005. DOI

Strauss I.; Mundstock A.; Hinrichs D.; Himstedt R.; Knebel A.; Reinhardt C.; Dorfs D.; Caro J. The Interaction of Guest Molecules with Co-MOF-74: A Vis/NIR and Raman Approach. Angew. Chem., Int. Ed. 2018, 57, 7434–7439. 10.1002/anie.201801966. PubMed DOI

Tramsek M.; Zemva B. Synthesis, Properties and Chemistry of Xenon(II) Fluoride. Acta Chim. Slov. 2006, 53, 105–116. 10.1002/chin.200721209. DOI

Boyd R. H.; Phillips W. D. Solution Dimerization of the Tetracyanoquinodimethane Ion Radical. J. Chem. Phys. 1965, 43, 2927–2929. 10.1063/1.1697251. DOI

Khatkale M. S.; Devlin J. P. The vibrational and electronic spectra of the mono-, di-, and trianon salts of TCNQ. J. Chem. Phys. 1979, 70, 1851–1859. 10.1063/1.437662. DOI

Suchanski M. R.; Van Duyne R. P. Resonance Raman spectroelectrochemistry. IV. The oxygen decay chemistry of the tetracyanoquinodimethane dianion. J. Am. Chem. Soc. 1976, 98, 250–252. 10.1021/ja00417a049. DOI

Grossel M. C.; Duke A. J.; Hibbert D. B.; Lewis I. K.; Seddon E. A.; Horton P. N.; Weston S. C. An Investigation of the Factors that Influence the Decomposition of 7,7’,8,8’-Tetracyanoquinodimethane (TCNQ) and Its Salts to, and Structural Characterization of, the α,α-Dicyano-p-toluoylcyanide Anion. Chem. Mater. 2000, 12, 2319–2323. 10.1021/cm991160g. DOI

Takenaka T. Infrared and Raman Spectra of TCNQ and TCNQ-d4 Crystals. Bull. Inst. Chem. Res. Kyoto Univ. 1969, 47, 387–400.

Bonino F.; Chavan S.; Vitillo J. G.; Groppo E.; Agostini G.; Lamberti C.; Dietzel P. D. C.; Prestipino C.; Bordiga S. Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. Chem. Mater. 2008, 20, 4957–4968. 10.1021/cm800686k. DOI

Qin L.; Tripathi G. N. R.; Schuler R. H. Time-resolved resonance Raman studies of terephthalic acid anion radicals. J. Phys. Chem. 1989, 93, 5432–5437. 10.1021/j100351a024. DOI

Valenzano L.; Vitillo J. G.; Chavan S.; Civalleri B.; Bonino F.; Bordiga S.; Lamberti C. Structure-activity relationships of simple molecules adsorbed on CPO-27-Ni metal-organic framework: In situ experiments vs. theory. Catal. Today 2012, 182, 67–79. 10.1016/j.cattod.2011.07.020. DOI

Bernard M. C.; Hugot-Le Goff A. Quantitative characterization of polyaniline films using Raman spectroscopy. Electrochim. Acta 2006, 52, 595–603. 10.1016/j.electacta.2006.05.039. DOI

Chi C.-K.; Nixon E. R. Resonance Raman studies of RbTCNQ and KTCNQ. Spectrochim. Acta, Part A 1975, 31, 1739–1747. 10.1016/0584-8539(75)80117-6. DOI

Futamata M.; Morioka Y.; Nakagawa I. Infrared and Raman spectra of alkali metal salts of TCNQ. Spectrochim. Acta, Part A 1983, 39, 515–528. 10.1016/0584-8539(83)80100-7. DOI

Harris M.; Hoagland J. J.; Mazur U.; Hipps K. W. Raman and infrared spectra of metal salts of α, α-dicyano-p-toluoylcyanide: non-resonant Raman scattering in tetracyano-p-quinodimethanide. Vib. Spectrosc. 1995, 9, 273–277. 10.1016/0924-2031(95)00010-r. DOI

Qi Y.; Mazur U.; Hipps K. W. Charge transfer induced chemical reaction of tetracyano-p-quinodimethane adsorbed on graphene. RSC Adv. 2012, 2, 10579.10.1039/c2ra21756b. DOI

Kamitsos E. I.; Risen W. M. Raman studies in CuTCNQ: Resonance Raman spectral observations and calculations for TCNQ ion radicals. J. Chem. Phys. 1983, 79, 5808–5819. 10.1063/1.445769. DOI

Chen J.; Zhang H.; Liu X.; Yuan C.; Jia M.; Luo Z.; Yao J. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13. Phys. Chem. Chem. Phys. 2016, 18, 7190–7196. 10.1039/c5cp06892d. PubMed DOI

Ek Weis J.; Costa S. D.; Frank O.; Bastl Z.; Kalbac M. Fluorination of Isotopically Labeled Turbostratic and Bernal Stacked Bilayer Graphene. Chem.—Eur. J. 2015, 21, 1081–7. 10.1002/chem.201404813. PubMed DOI

Biesinger M. C.; Payne B. P.; Grosvenor A. P.; Lau L. W. M.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. 10.1016/j.apsusc.2010.10.051. DOI

Ilton E. S.; Post J. E.; Heaney P. J.; Ling F. T.; Kerisit S. N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475–485. 10.1016/j.apsusc.2015.12.159. DOI

Oku M.; Hirokawa K.; Ikeda S. X-ray photoelectron spectroscopy of manganese-oxygen systems. J. Electron Spectrosc. Relat. Phenom. 1975, 7, 465–473. 10.1016/0368-2048(75)85010-9. DOI

Hirashige T.; Hagiwara R.; Ito Y. Chemical stability and electrochemical activity of xenon difluoride in propylene carbonate. J. Fluorine Chem. 2000, 106, 205–209. 10.1016/s0022-1139(00)00332-8. DOI

Tramsek M.; Benkic P.; Zemva B. [Mg(XeF2)n] (AsF6)2 (n = 4, 2): First Compounds of Magnesium with XeF2. Inorg. Chem. 2004, 43, 699–703. 10.1021/ic034826o. PubMed DOI

Cozzolino A. F.; Brozek C. K.; Palmer R. D.; Yano J.; Li M.; Dincă M. Ligand Redox Non-innocence in the Stoichiometric Oxidation of Mn2(2,5-dioxidoterephthalate) (Mn-MOF-74). J. Am. Chem. Soc. 2014, 136, 3334–3337. 10.1021/ja411808r. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework

. 2024 ; 5 (1) : 220. [epub] 20241009

Highly Luminescent TCNQ in Melamine

. 2024 Jun 28 ; 2 (6) : 1128-1135. [epub] 20240606

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...