Metal-Organic Framework Co-MOF-74-Based Host-Guest Composites for Resistive Gas Sensing
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P 30431
Austrian Science Fund FWF - Austria
PubMed
30900448
PubMed Central
PMC6492948
DOI
10.1021/acsami.8b22002
Knihovny.cz E-resources
- Keywords
- Guest@MOF, conducting MOFs, gas sensing, infiltration of MOFs, tetrathiafulvalene,
- Publication type
- Journal Article MeSH
Increasing demands in the field of sensing, especially for gas detection applications, require new approaches to chemical sensors. Metal-organic frameworks (MOFs) can play a decisive role owing to their outstanding performances regarding gas selectivity and sensitivity. The tetrathiafulvalene (TTF)-infiltrated MOF, Co-MOF-74, has been prepared following the host-guest concept and evaluated in resistive gas sensing. The Co-MOF-74-TTF crystal morphology has been characterized via X-ray diffraction and scanning electron microscopy, while the successful incorporation of TTF into the MOF has been validated via X-ray photoemission spectroscopy, thermogravimetric analysis, UV/vis, infrared (IR), and Raman investigations. We demonstrate a reduced yet ample uptake of CO2 in the pores of the new material by IR imaging and adsorption isotherms. The nanocomposite Co-MOF-74-TTF exhibits an increased electrical conductivity in comparison to Co-MOF-74 which can be influenced by gas adsorption from a surrounding atmosphere. This effect could be used for gas sensing.
Faculty of Physics and Earth Sciences Universität Leipzig Linnéstraße 5 D 04103 Leipzig Germany
Faculty of Physics University of Vienna Boltzmanngasse 5 A 1090 Vienna Austria
See more in PubMed
Batten S. R.; Champness N. R.; Chen X.-M.; Garcia-Martinez J.; Kitagawa S.; Öhrström L.; O’Keeffe M.; Paik Suh M.; Reedijk J. Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. 10.1351/pac-rec-12-11-20. DOI
Yaghi O. M.; O’Keeffe M.; Ockwig N. W.; Chae H. K.; Eddaoudi M.; Kim J. Reticular Synthesis and the Design of new Materials. Nature 2003, 423, 705–714. 10.1038/nature01650. PubMed DOI
Wang Z.; Chen G.; Ding K. Self-Supported Catalysts. Chem. Rev. 2009, 109, 322–359. 10.1021/cr800406u. PubMed DOI
Wu M.-X.; Yang Y.-W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134.10.1002/adma.201606134. PubMed DOI
Li J.-R.; Kuppler R. J.; Zhou H.-C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. 10.1039/b802426j. PubMed DOI
Li Y.-X.; Ji Y.-N.; Jin M.-M.; Qi S.-C.; Li S.-S.; Xue D.-M.; Yue M. B.; Liu X.-Q.; Sun L.-B. Controlled Construction of Cu(I) Sites within Confined Spaces via Host-Guest Redox: Highly Efficient Adsorbents for Selective Co Adsorption. ACS Appl. Mater. Interfaces 2018, 10, 40044–40053. 10.1021/acsami.8b15913. PubMed DOI
Morris R. E.; Wheatley P. S. Gas Storage in Nanoporous Materials. Angew. Chem., Int. Ed. 2008, 47, 4966–4981. 10.1002/anie.200703934. PubMed DOI
Kreno L. E.; Leong K.; Farha O. K.; Allendorf M.; van Duyne R. P.; Hupp J. T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. 10.1021/cr200324t. PubMed DOI
Achmann S.; Hagen G.; Kita J.; Malkowsky I.; Kiener C.; Moos R. Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors 2009, 9, 1574–1589. 10.3390/s90301574. PubMed DOI PMC
Jazdi N.Cyber physical systems in the context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2014; pp 1–4.
Capone S.; Forleo A.; Francioso L.; Rella R.; Siciliano P.; Spadavecchia J.; Presicce D. S.; Taurino A. M. Solid State Gas Sensors: State of the Art and Future Activities. Adv. Mater. 2003, 5, 1335–1348.
Razavi S. A. A.; Masoomi M. Y.; Morsali A. Stimuli-Responsive Metal-Organic Framework (MOF) with Chemo-Switchable Properties for Colorimetric Detection of CHCl3. Chem.—Eur. J. 2017, 23, 12559–12564. 10.1002/chem.201702127. PubMed DOI
Zhang Y.; Li B.; Ma H.; Zhang L.; Zhang W. An RGH-MOF as a naked eye colorimetric fluorescent sensor for picric acid recognition. J. Mater. Chem. C 2017, 5, 4661–4669. 10.1039/c7tc00936d. DOI
Smith M. K.; Jensen K. E.; Pivak P. A.; Mirica K. A. Direct Self-Assembly of Conductive Nanorods of Metal–Organic Frameworks into Chemiresistive Devices on Shrinkable Polymer Films. Chem. Mater. 2016, 28, 5264–5268. 10.1021/acs.chemmater.6b02528. DOI
Campbell M. G.; Sheberla D.; Liu S. F.; Swager T. M.; Dincă M. Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing. Angew. Chem., Int. Ed. 2015, 54, 4349–4352. 10.1002/anie.201411854. PubMed DOI
Campbell M.; Dincă M. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108.10.3390/s17051108. PubMed DOI PMC
Dincă M.; Léonard F. Metal–Organic Frameworks for Electronics and Photonics. MRS Bull. 2016, 41, 854–857. 10.1557/mrs.2016.240. DOI
Leong C. F.; Usov P. M.; D’Alessandro D. M. Intrinsically conducting metal-organic frameworks. MRS Bull. 2016, 41, 858–864. 10.1557/mrs.2016.241. DOI
Takaishi S.; Hosoda M.; Kajiwara T.; Miyasaka H.; Yamashita M.; Nakanishi Y.; Kitagawa Y.; Yamaguchi K.; Kobayashi A.; Kitagawa H. Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorg. Chem. 2009, 48, 9048–9050. 10.1021/ic802117q. PubMed DOI
Gándara F.; Uribe-Romo F. J.; Britt D. K.; Furukawa H.; Lei L.; Cheng R.; Duan X.; O’Keeffe M.; Yaghi O. M. Porous, Conductive Metal-Triazolates and Their Structural Elucidation by the Charge-Flipping Method. Chem.—Eur. J. 2012, 18, 10595–10601. 10.1002/chem.201103433. PubMed DOI
Sun L.; Miyakai T.; Seki S.; Dincă M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal-Organic Framework with Infinite (−Mn-S−)∞ Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc. 2013, 135, 8185–8188. 10.1021/ja4037516. PubMed DOI
Darago L. E.; Aubrey M. L.; Yu C. J.; Gonzalez M. I.; Long J. R. Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703–15711. 10.1021/jacs.5b10385. PubMed DOI
Talin A. A.; Centrone A.; Ford A. C.; Foster M. E.; Stavila V.; Haney P.; Kinney R. A.; Szalai V.; El Gabaly F.; Yoon H. P.; Léonard F.; Allendorf M. D. Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science 2014, 343, 66–69. 10.1126/science.1246738. PubMed DOI
Chui S. S. Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. 10.1126/science.283.5405.1148. PubMed DOI
Kepler R. G.; Bierstedt P. E.; Merrifield R. E. Electronic Conduction and Exchange Interaction in a New Class of Conductive Organic Solids. Phys. Rev. Lett. 1960, 5, 503–504. 10.1103/physrevlett.5.503. DOI
Allendorf M. D.; Foster M. E.; Léonard F.; Stavila V.; Feng P. L.; Doty F. P.; Leong K.; Ma E. Y.; Johnston S. R.; Talin A. A. Guest-Induced Emergent Properties in Metal-Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195. 10.1021/jz5026883. PubMed DOI
Sengupta A.; Datta S.; Su C.; Herng T. S.; Ding J.; Vittal J. J.; Loh K. P. Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Appl. Mater. Interfaces 2016, 8, 16154–16159. 10.1021/acsami.6b03073. PubMed DOI
Guo Z.; Panda D. K.; Gordillo M. A.; Khatun A.; Wu H.; Zhou W.; Saha S. Lowering Band Gap of an Electroactive Metal-Organic Framework via Complementary Guest Intercalation. ACS Appl. Mater. Interfaces 2017, 9, 32413–32417. 10.1021/acsami.7b07292. PubMed DOI
Shiozawa H.; Bayer B. C.; Peterlik H.; Meyer J. C.; Lang W.; Pichler T. Doping of Metal-Organic Frameworks Towards Resistive Sensing. Sci. Rep. 2017, 7, 2439.10.1038/s41598-017-02618-y. PubMed DOI PMC
Rosi N. L.; Kim J.; Eddaoudi M.; Chen B.; O’Keeffe M.; Yaghi O. M. Rod Packings and Metal–Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1518. 10.1021/ja045123o. PubMed DOI
Dietzel P. D. C.; Georgiev P. A.; Eckert J.; Blom R.; Strässle T.; Unruh T. Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem. Commun. 2010, 46, 4962–4964. 10.1039/c0cc00091d. PubMed DOI
Strauss I.; Mundstock A.; Hinrichs D.; Himstedt R.; Knebel A.; Reinhardt C.; Dorfs D.; Caro J. Vis/NIR- und Raman-Untersuchung der Wechselwirkung von Gastmolekülen mit Co-MOF-74. Angew. Chem. Int. Ed. 2018, 130, 7434–7439. 10.1002/ange.201801966. PubMed DOI
Wudl F.; Wobschall D.; Hufnagel E. J. Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system. J. Am. Chem. Soc. 1972, 94, 670–672. 10.1021/ja00757a079. DOI
Chmelik C.; Mundstock A.; Dietzel P. D. C.; Caro J. Idiosyncrasies of Co2(dhtp): In Situ-Annealing by Methanol. Microporous Mesoporous Mater. 2014, 183, 117–123. 10.1016/j.micromeso.2013.09.002. DOI
Adeel S. M.; Martin L. L.; Bond A. M. Redox-induced solid-solid state transformation of tetrathiafulvalene (TTF) microcrystals into mixed-valence and π-dimers in the presence of nitrate anions. J. Solid State Electrochem. 2014, 18, 3287–3298. 10.1007/s10008-014-2656-z. DOI
Moulder J. F.; Stickle W. F.; Sobol P. E.; Bomben K. D.. Handbook of X-ray Photoelectron Spectroscopy; PerkinElmer Corporation: Eden Prairie, 1992; p 61.
Castner D. G.; Hinds K.; Grainger D. W. X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces. Langmuir 1996, 12, 5083–5086. 10.1021/la960465w. DOI
Rufael T. S.; Huntley D. R.; Mullins D. R.; Gland J. L. Methyl Thiolate on Ni(111): Multiple Adsorption Sites and Mechanistic Implications. J. Phys. Chem. 1995, 99, 11472–11480. 10.1021/j100029a027. DOI
Mullins D. R.; Lyman P. F. Adsorption and reaction of methanethiol on tungsten(001). J. Phys. Chem. 1993, 97, 9226–9232. 10.1021/j100138a026. DOI
García E. J.; Mowat J. P. S.; Wright P. A.; Pérez-Pellitero J.; Jallut C.; Pirngruber G. D. Role of Structure and Chemistry in Controlling Separations of CO2/CH4 and CO2/CH4/CO Mixtures over Honeycomb MOFs with Coordinatively Unsaturated Metal Sites. J. Phys. Chem. C 2012, 116, 26636–26648. 10.1021/jp309526k. DOI
Li J.-R.; Kuppler R. J.; Zhou H.-C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. 10.1039/b802426j. PubMed DOI
Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework