• This record comes from PubMed

Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework

. 2024 ; 5 (1) : 220. [epub] 20241009

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of Zn ( DMSO ) 6 2 + cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs.

See more in PubMed

Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature423, 705–714 (2003). PubMed

Kitagawa, S., Kitaura, R. & Noro, S.-i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). PubMed

Zavyalova, A. G., Kladko, D. V., Chernyshov, I. Y. & Vinogradov, V. V. Large mofs: synthesis strategies and applications where size matters. J. Mater. Chem. A9, 25258–25271 (2021).

Rodrigo, G. & Ballesteros-Garrido, R. Metal-organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Trans.51, 7775–7782 (2022). PubMed

Han, S. et al. Chromatography in a single metal-organic framework (MOF) crystal. J. Am. Chem. Soc.132, 16358–16361 (2010). PubMed

Villemot, V., Hamel, M., Pansu, R. B., Leray, I. & Bertrand, G. H. V. Unravelling the true mof-5 luminescence. RSC Adv.10, 18418–18422 (2020). PubMed PMC

Li, L., Sun, F., Jia, J., Borjigin, T. & Zhu, G. Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm15, 4094–4098 (2013).

Kim, N., Park, J. H., Paczesny, J. & Grzybowski, B. A. Uniform and directional growth of centimeter-sized single crystals of cyclodextrin-based metal organic frameworks. CrystEngComm21, 1867–1871 (2019).

Garcia-Garfido, J. M. et al. Millimeter-scale Zn(3-ptz)2metal-organic framework single crystals: self-assembly mechanism and growth kinetics. ACS Omega6, 17289–17298 (2021). PubMed PMC

Fan, F. et al. Preparation of large-size single-crystal metal-organic frameworks via the marangoni effect. CrystEngComm25, 2877–2881 (2023).

Yaghi, O. M. Evolution of mof single crystals. Chem8, 1541–1543 (2022).

Matuszek, K., Pankalla, E., Grymel, A., Latos, P. & Chrobok, A. Studies on the solubility of terephthalic acid in ionic liquids. Molecules25, 80 (2020). PubMed PMC

Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature402, 276–279 (1999).

McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V. & Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Des.13, 5481–5486 (2013).

Feng, X., Wu, T. & Carreon, M. A. Synthesis of zif-67 and zif-8 crystals using dmso (dimethyl sulfoxide) as solvent and kinetic transformation studies. J. Cryst. Growth455, 152–156 (2016).

Sun, J., Kwon, H. T. & Jeong, H.-K. Continuous synthesis of high quality metal-organic framework hkust-1 crystals and composites via aerosol-assisted synthesis. Polyhedron153, 226–233 (2018).

Chen, L., Luque, R. & Li, Y. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev.46, 4614–4630 (2017). PubMed

Liu, J. J., Fu, J. J., Liu, T., Shen, X. & Cheng, F. X. Encapsulating electron-rich guest in a mof host through donor-acceptor interaction for highly tunable luminescence. Dyes Pigments205, 110542 (2022).

Liu, X. T. et al. Recent progress in host-guest metal-organic frameworks: Construction and emergent properties. Coord. Chem. Rev.476, 214921 (2023).

Huang, B. & Tan, Z. Host-guest interactions between metal-organic frameworks and air-sensitive complexes at high temperature. Front. Chem.9, 1–7 (2021). PubMed PMC

Stanley, P. M. et al. Host-guest interactions in a metal-organic framework isoreticular series for molecular photocatalytic co2 reduction. Angew. Chem. Int. Ed.60, 17854–17860 (2021). PubMed PMC

Shiozawa, H. et al. Doping of metal-organic frameworks towards resistive sensing. Sci. Rep. 7,2439 (2017). PubMed PMC

Strauss, I. et al. Metal-organic framework co-mof-74-based host-guest composites for resistive gas sensing. ACS Appl. Mater. Interfaces11, 14175–14181 (2019). PubMed PMC

Bláha, M., Valeš, V., Bastl, Z., Kalbáč, M. & Shiozawa, H. Host-guest interactions in metal-organic frameworks doped with acceptor molecules as revealed by resonance raman spectroscopy. J. Phys. Chem. C.124, 24245–24250 (2020). PubMed PMC

Zhao, S. N., Zhang, Y., Song, S. Y. & Zhang, H. J. Design strategies and applications of charged metal organic frameworks. Coord. Chem. Rev.398, 113007 (2019).

Zhao, X. et al. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nat. Commun.4, 2344 (2013). PubMed

Li, Y. et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun.8, 1354 (2017). PubMed PMC

Wu, X., Macreadie, L. K. & Gale, P. A. Anion binding in metal-organic frameworks. Coord. Chem. Rev.432, 213708 (2021).

Sun, T. et al. In situ self-assembled cationic lanthanide metal organic framework membrane sensor for effective mno4- and ascorbic acid detection. Anal. Chim. Acta1142, 211–220 (2021). PubMed

Kang, K. et al. Constructing cationic metal-organic framework materials based on pyrimidyl as a functional group for perrhenate/pertechnetate sorption. Inorg. Chem.60, 16420–16428 (2021). PubMed

Chen, Z. P. et al. Cationic metal-organic frameworks constructed from a trigonal imidazole-containing ligand for the removal of cr2o72- in water. N. J. Chem.46, 12994–13000 (2022).

Davarcł, D., Erucar, I., Yücesan, G. & Zorlu, Y. Cationic metal-organic frameworks synthesized from cyclotetraphosphazene linkers with flexible tentacles. Cryst. Growth Des.22, 7123–7132 (2022).

Nandi, S. et al. A robust ultra-microporous cationic aluminum-based metal-organic framework with a flexible tetra-carboxylate linker. Commun. Chem.6, 144 (2023). PubMed PMC

Li, P. et al. Design and synthesis of a water-stable anionic uranium-based metal-organic framework (mof) with ultra large pores. Angew. Chem. Int. Ed.55, 10358–10362 (2016). PubMed

Shi, X., Zu, Y., Jiang, S. & Sun, F. An anionic indium-organic framework with spirobifluorene-based ligand for selective adsorption of organic dyes. Inorg. Chem.60, 1571–1578 (2021). PubMed

Ivanova, A. A. et al. New carboxylate anionic sm-mof: synthesis, structure, and effect of the isomorphic substitution of sm3+ with gd3+ and tb3+ ions on the luminescent properties. Inorganics10, 104 https://www.mdpi.com/2304-6740/10/8/104 (2022).

Jiang, K., Ni, W., Cao, X., Zhang, L. & Lin, S. A nanosized anionic mof with rich thiadiazole groups for controlled oral drug delivery. Mater. Today Bio13, 100180 (2022). PubMed PMC

Meng, X. et al. A stable, pillar-layer metal-organic framework containing uncoordinated carboxyl groups for separation of transition metal ions. Chem. Commun.50, 6406–6408 (2014). PubMed

Akintola, O., Ziegenbalg, S., Buchholz, A., Görls, H. & Plass, W. A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties. CrystEngComm19, 2723–2732 (2017).

Gu, C., Yu, Z., Liu, J. & Sholl, D. S. Construction of an anion-pillared mof database and the screening of mofs suitable for xe/kr separation. ACS Appl. Mater. Interfaces13, 11039–11049 (2021). PubMed

Li, X. et al. A review on anion-pillared metal-organic frameworks (apmofs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord. Chem. Rev.470, 214714 (2022).

Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for zn(bdc) (bdc = 1,4-benzenedicarboxylate). J. Am. Chem. Soc.120, 8571–8572 (1998).

Getachew, N., Chebude, Y., Diaz, I. & Sanchez-Sanchez, M. Room temperature synthesis of metal organic framework mof-2. J. Porous Mater.21, 769–773 (2014).

Ghasemzadeh, M. A., Abdollahi-Basir, M. H. & Mirhosseini-Eshkevari, B. Multi-component synthesis of spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-triones using zinc terephthalate metal-organic frameworks.Green Chem. Lett. Rev.11, 47–53 (2018).

Saffon-Merceron, N. et al. Two new metal-organic framework structures derived from terephthalate and linear trimetallic zinc building units. Inorg. Chim. Acta426, 15–19 (2015).

Wang, R., Hong, M., Liang, Y. & Cao, R. Tris(μ-1,4-benzenedicarboxylate)tetrakis(dimethyl sulfoxide)di-μ 3 -hydroxo-tetrazinc dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online57, m277–m279 (2001).

Neese, F. The orca program system. WIREs Comput. Mol. Sci.2, 73–78 (2012).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...