A mechanistic statistical approach to infer invasion characteristics of human-dispersed species with complex life cycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 GM138530
NIGMS NIH HHS - United States
PubMed
38405850
PubMed Central
PMC10888729
DOI
10.1101/2024.02.09.578762
PII: 2024.02.09.578762
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The rising introduction of invasive species through trade networks threatens biodiversity and ecosystem services. Yet, we have a limited understanding of how transportation networks determine patterns of range expansion. This is partly because current analytical models fail to integrate the invader's life-history dynamics with heterogeneity in human-mediated dispersal patterns. And partly because classical statistical methods often fail to provide reliable estimates of model parameters due to spatial biases in the presence-only records and lack of informative demographic data. To address these gaps, we first formulate an age-structured metapopulation model that uses a probability matrix to emulate human-mediated dispersal patterns. The model reveals that an invader spreads along the shortest network path, such that the inter-patch network distances decrease with increasing traffic volume and reproductive value of hitchhikers. Next, we propose a Bayesian statistical method to estimate model parameters using presence-only data and prior demographic knowledge. To show the utility of the statistical approach, we analyze zebra mussel (Dreissena polymorpha) expansion in North America through the commercial shipping network. Our analysis underscores the importance of correcting spatial biases and leveraging priors to answer questions, such as where and when the zebra mussels were introduced and what life-history characteristics make these mollusks successful invaders.
Czech University of Life Sciences Prague Forestry and Wood Sciences 16500 Prague 6 Czech Republic
Department of Ecology and Evolution Biophore UNIL Sorge University of Lausanne Lausanne 1015
Department of Integrative Biology The University of Texas at Austin Austin Texas 78712
Department of Statistics and Data Sciences The University of Texas at Austin Austin Texas 78705
USDA Forest Service Northern Research Station Morgantown West Virginia 15349
Zobrazit více v PubMed
Bagnara M., Nowak L., Boehmer H. J., Schöll F., Schurr F. M., and Seebens H.. 2022. Simulating the spread and establishment of alien species along aquatic and terrestrial transport networks: A multi-pathway and high‐resolution approach. Journal of Applied Ecology 59:1769–1780.
Banks N. C., Paini D. R., Bayliss K. L., and Hodda M.. 2015. The role of global trade and transport network topology in the human‐mediated dispersal of alien species. Ecology letters 18:188–199. PubMed
Bateman A. W., Neubert M. G., Krkošek M., and Lewis M. A.. 2015. Generational spreading speed and the dynamics of population range expansion. The American Naturalist 186:362–375. PubMed
Bellard C., Cassey P., and Blackburn T. M.. 2016. Alien species as a driver of recent extinctions. Biology Letters 12:20150623. PubMed PMC
Berliner L. M. 1996, Hierarchical Bayesian time series models: Maximum Entropy and Bayesian Methods. Neatherland, Kluwer Academic Publishers.
Besson M., Alison J., Bjerge K., Gorochowski T. E., Høye T. T., Jucker T., Mann H. M. et al. 2022. Towards the fully automated monitoring of ecological communities. Ecology Letters 25:2753–2775. PubMed PMC
Brockmann D., and Helbing D.. 2013. The hidden geometry of complex, network-driven contagion phenomena. Science 342:1337–1342. PubMed
Buhle E. R., Margolis M., and Ruesink J. L.. 2005. Bang for buck: Cost-effective control of invasive species with different life histories. Ecological Economics 52:355–366.
Carlton J. T. 2008. The zebra mussel Dreissena polymorpha found in North America in 1986 and 1987. Journal of Great Lakes Research 34:770–773.
Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., Brubaker M. et al. 2017. Stan: A probabilistic programming language. Journal of Statistical Software 76. PubMed PMC
Carrasco L. R., Mumford J., MacLeod A., Harwood T., Grabenweger G., Leach A., Knight J. et al. 2010. Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models. Ecological Modelling 221:2068–2075.
Casagrandi R., Mari L., and Gatto M.. 2007. Modelling the local dynamics of the zebra mussel (Dreissena polymorpha). Freshwater Biology 52:1223–1238.
Caswell H. 2001, Matrix Population Models. MA, USA, Sinauer Sunderland.
Chapman D. S., Makra L., Albertini R., Bonini M., Páldy A., Rodinkova V., Šikoparija B. et al. 2016. Modelling the introduction and spread of non‐native species: International trade and climate change drive ragweed invasion. Global Change Biology 22:3067–3079. PubMed
Colizza V., Barrat A., Barthélemy M., and Vespignani A.. 2006. The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences 103:2015–2020. PubMed PMC
Crawley M. J. 1986. The population biology of invaders. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 314:711–731.
Crooks J. A. 2005. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329.
Cross C. L., Wong W. H., and Che T.. 2011. Estimating carrying capacity of quagga mussels (Dreissena rostriformis bugensis) in a natural system: A case study of the Boulder Basin of Lake Mead, Nevada-Arizona. Aquatic Invasions 6:141–147.
Crouse D. T., Crowder L. B., and Caswell H.. 1987. A stage‐based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423.
Diagne C., Leroy B., Vaissière A.-C., Gozlan R. E., Roiz D., Jarić I., Salles J.-M. et al. 2021. High and rising economic costs of biological invasions worldwide. Nature 592:571–576. PubMed
Dorazio R. M., and Johnson F. A.. 2003. Bayesian inference and decision theory—A framework for decision making in natural resource management. Ecological Applications 13:556–563.
Engen S., Lande R., Sæther B.-E., and Weimerskirch H.. 2005. Extinction in relation to demographic and environmental stochasticity in age-structured models. Mathematical Biosciences 195:210–227. PubMed
Fenn‐Moltu G., Ollier S., Caton B., Liebhold A. M., Nahrung H., Pureswaran D. S., Turner R. M. et al. 2023. Alien insect dispersal mediated by the global movement of commodities. Ecological Applications 33:e2721. PubMed PMC
Fernald R. T., and Watson B. T.. 2013. Eradication of zebra mussels (Dreissena polymorpha) from Millbrook quarry, Virginia, Pages 195–214 in Nalepa T. F., and Schloesser D. W., eds. Quagga and Zebra Mussels: Biology, Impacts and Control. Boca Raton, FL, CRC press.
Ferrari J. R., Preisser E. L., and Fitzpatrick M. C.. 2014. Modeling the spread of invasive species using dynamic network models. Biological Invasions 16:949–960.
Floerl O., Inglis G., Dey K., and Smith A.. 2009. The importance of transport hubs in stepping‐stone invasions. Journal of Applied Ecology 46:37–45.
Gautreau A., Barrat A., and Barthelemy M.. 2008. Global disease spread: Statistics and estimation of arrival times. Journal of Theoretical Biology 251:509–522. PubMed
GBIF.org. 2022. Occurrence Download, The Global Biodiversity Information Facility.
Gelman A., Carlin J. B., Stern H. S., and Rubin D. B.. 1995, Bayesian Data Analysis, Chapman and Hall/CRC.
Gelman A., Vehtari A., Simpson D., Margossian C. C., Carpenter B., Yao Y., Kennedy L. et al. 2020. Bayesian workflow. arXiv preprint arXiv:2011.01808.
Gippet J. M., and Bertelsmeier C.. 2021. Invasiveness is linked to greater commercial success in the global pet trade. Proceedings of the National Academy of Sciences 118:e2016337118. PubMed PMC
Hallatschek O., and Fisher D. S.. 2014. Acceleration of evolutionary spread by long-range dispersal. Proceedings of the National Academy of Sciences 111:E4911–E4919. PubMed PMC
Hebert P. D., Muncaster B., and Mackie G.. 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 46:1587–1591.
Hobbs N. T., and Hooten M. B.. 2015, Bayesian Models: A Statistical Primer for Ecologists. Princeton, New Jersey, Princeton University Press.
Hoffman M. D., and Gelman A.. 2014. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15:1593–1623.
Hooten M. B., and Hefley T. J.. 2019, Bringing Bayesian Models to Life. Boca Raton, Florida, USA, CRC Press.
Hooten M. B., Wikle C. K., Dorazio R. M., and Royle J. A.. 2007. Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics 63:558–567. PubMed
Horvitz N., Wang R., Wan F.-H., and Nathan R.. 2017. Pervasive human‐mediated large‐scale invasion: Analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. Journal of Ecology 105:85—94.
Hu Y., and Zhu D.. 2009. Empirical analysis of the worldwide maritime transportation network. Physica A: Statistical Mechanics and its Applications 388:2061–2071.
Hui C., and Richardson D. M.. 2017, Invasion Dynamics. Oxford, Oxford University Press.
Hulme P. E. 2009. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46:10–18.
Hunter C. M., and Caswell H.. 2005. The use of the vec-permutation matrix in spatial matrix population models. Ecological Modelling 188:15–21.
Iannelli F., Koher A., Brockmann D., Hovel P., and Sokolov I. M.. 2017. Effective distances for epidemics spreading on complex networks. Physical Review E 95:012313. PubMed PMC
Isaac N. J., van Strien A. J., August T. A., de Zeeuw M. P., and Roy D. B.. 2014. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution 5:1052–1060.
Johnson L. E., and Carlton J. T.. 1996. Post-establishment spread in large-scale invasions: Dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77:1686–1690.
Johnson L. E., and Padilla D. K.. 1996. Geographic spread of exotic species: Ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biological Conservation 78:23–33.
Johnston A., Matechou E., and Dennis E. B.. 2023. Outstanding challenges and future directions for biodiversity monitoring using citizen science data. Methods in Ecology and Evolution 14:103–116.
Keevin T. M., Yarbrough R. E., and Miller A. C.. 1992. Long-distance dispersal of zebra mussels (Dreissena polymorpha) attached to hulls of commercial vessels. Journal of Freshwater Ecology 7:437.
Keitt T. H., and Abelson E. S.. 2021. Ecology in the age of automation. Science 373:858–859. PubMed
Kot M., Lewis M. A., and vandenDriessche P.. 1996. Dispersal data and the spread of invading organisms. Ecology 77:2027—2042.
Kulkarni V. G. 2016, Modeling and Analysis of Stochastic Systems. London, U.K, Chapman and Hall/CRC.
Lande R., and Orzack S. H.. 1988. Extinction dynamics of age-structured populations in a fluctuating environment. Proceedings of the National Academy of Sciences 85:7418–7421. PubMed PMC
Lefkovitch L. 1965. The study of population growth in organisms grouped by stages. Biometrics:1—18.
Leslie P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183–212. PubMed
Lewis M. A., Petrovskii S. V., and Potts J. R.. 2016, The Mathematics Behind Biological Invasions, v. 44. New York, Springer.
Lowe S., Browne M., Boudjelas S., and De-Poorter M.. 2004. One hundred of the world’s worst invasive alien species: A selection from the global invasive species database. Invasive Species Specialist Group, IUCN, Switzerland.
Ludyanskiy M. L., McDonald D., and MacNeill D.. 1993. Impact of the zebra mussel, a bivalve invader: Dreissena polymorpha is rapidly colonizing hard surfaces throughout waterways of the United States and Canada. Bioscience 43:533–544.
Lutscher F. 2019, Integrodifference Equations in Spatial Ecology. Cham, Switzerland, Springer.
May R. M. 2004. Uses and abuses of mathematics in biology. Science 303:790–793. PubMed
McElreath R. 2020, Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boca Raton, FL, Chapman & Hall/CRC Press.
Meyerson L. A., and Mooney H. A.. 2007. Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment 5:199–208.
Nalepa T. F., and Schloesser D. W.. 2013, Quagga and Zebra Mussels: Biology, Impacts, and Control. Boca Raton, Florida, USA, CRC press.
Neal R. M. 2011. MCMC using Hamiltonian dynamics, Pages 2 in Brooks S., Gelman A., Jones G., and Meng X.-L., eds. Handbook of Markov Chain Monte Carlo. New York, CRC Press.
Neath A. A., and Samaniego F. J.. 1997. On the efficacy of Bayesian inference for nonidentifiable models. The American Statistician 51:225–232.
Neubert M. G., and Caswell H.. 2000. Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81:1613–-1628.
Padilla D. K., Chotkowski M. A., and Buchan L. A.. 1996. Predicting the spread of zebra mussels (Dreissena polymorpha) to inland waters using boater movement patterns. Global Ecology and Biogeography Letters:353–359.
Pagel J., and Schurr F. M.. 2012. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography 21:293—304.
Pardieck K. L., Z. L. D.J. Jr, A. M. V.I., and M. -A. R. and Hudson. 2020. North American Breeding Bird Survey Dataset 1966—2019in U. S. G. Survey, ed.
Peterson A. T., Soberón J., Pearson R. G., Anderson R. P., Martinez-Meyer E., Nakamura M., and Araújo M. B.. 2011, Ecological Niches and Geographic Distributions, v. 49. Princeton, New Jersey, USA, Princeton University Press.
Pollard E., Yates T. J., and Courtney S. P.. 1994. Monitoring butterflies for ecology and conservation: The British butterfly monitoring scheme. Ecology 75:1851.
Ricker W. E. 1954. Stock and Recruitment. Journal of the Fisheries Research Board of Canada 11:559–623.
Rvachev L. A., and Longini I. M. Jr. 1985. A mathematical model for the global spread of influenza. Mathematical Biosciences 75:3–22.
Seebens H., Blackburn T. M., Dyer E. E., Genovesi P., Hulme P. E., Jeschke J. M., Pagad S. et al. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences 115:E2264–E2273. PubMed PMC
Seebens H., Briski E., Ghabooli S., Shiganova T., MacIsaac H. J., and Blasius B.. 2019. Non-native species spread in a complex network: The interaction of global transport and local population dynamics determines invasion success. Proceedings of the Royal Society B 286:20190036. PubMed PMC
Shine R., Brown G. P., and Phillips B. L.. 2011. An evolutionary process that assembles phenotypes through space rather than through time. Proceedings of the National Academy of Sciences 108:5708–5711. PubMed PMC
Simberloff D. 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40:81–102.
Simini F., González M. C., Maritan A., and Barabási A.-L.. 2012. A universal model for mobility and migration patterns. Nature 484:96–100. PubMed
Skellam J. G. 1951. Random dispersal in theoretical populations. Biometrika 38:196—218. PubMed
Solano A., Rodriguez S. L., Greenwood L., Dodds K. J., and Coyle D. R.. 2021. Firewood transport as a vector of forest pest dispersal in North America: A scoping review. Journal of Economic Entomology 114:14–23. PubMed
Stouffer S. A. 1940. Intervening opportunities: A theory relating mobility and distance. American Sociological Review 5:845–867.
Thompson B. K., Olden J. D., and Converse S. J.. 2021. Mechanistic invasive species management models and their application in conservation. Conservation Science and Practice 3:e533.
Turbelin A. J., Cuthbert R. N., Essl F., Haubrock P. J., Ricciardi A., and Courchamp F.. 2023. Biological invasions are as costly as natural hazards. Perspectives in Ecology and Conservation.
USGS. 2022. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL, United States Geological Survey.
van den Bosch F., Hengeveld R., and Metz J. A. J.. 1992. Analysing the velocity of animal range expansion. Journal of Biogeography:135–150.
Van den Bosch F., Metz J. A. J., and Diekmann O.. 1990. The velocity of spatial population expansion. Journal of Mathematical Biology 28:529–565.
Warziniack T., Haight R. G., Yemshanov D., Apriesnig J. L., Holmes T. P., Countryman A. M., Rothlisberger J. D. et al. 2021. Economics of invasive species. Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector:305–320.
Wikle C. K. 2003. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84:1382—1394.
Williams P. J., and Hooten M. B.. 2016. Combining statistical inference and decisions in ecology. Ecological Applications 26:1930–1942. PubMed
Wolf F., Kirsch C., and Donner R. V.. 2019. Edge directionality properties in complex spherical networks. Physical Review E 99:012301. PubMed
Yee D. A. 2008. Tires as habitats for mosquitoes: A review of studies within the eastern United States. Journal of Medical Entomology 45:581–593. PubMed
Yemshanov D., McKenney D. W., Pedlar J. H., Koch F. H., and Cook D.. 2009. Towards an integrated approach to modelling the risks and impacts of invasive forest species. Environmental Reviews 17:163–178.
Zipf G. K. 1946. The P 1 P 2/D hypothesis: On the intercity movement of persons. American Sociological Review 11:677–686.
Zook B., and Phillips S.. 2012. Uniform minimum protocols and standards for watercraft interception programs for dreissenid mussels in the western United States (UMPS). Pacific States Marine Fisheries Commission. Portland, OR. 77p.