Ideally Hexagonally Ordered TiO2 Nanotube Arrays
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28794939
PubMed Central
PMC5542745
DOI
10.1002/open.201700108
PII: OPEN201700108
Knihovny.cz E-zdroje
- Klíčová slova
- TiN protecting layers, TiO2 nanotube layers, anodization, focused ion beam milling, hexagonal ordering,
- Publikační typ
- časopisecké články MeSH
Ideally hexagonally ordered TiO2 nanotube layers were produced through the optimized anodization of Ti substrates. The Ti substrates were firstly covered with a TiN protecting layer prepared through atomic layer deposition (ALD). Pre-texturing of the TiN-protected Ti substrate on an area of 20×20 μm2 was carried out by focused ion beam (FIB) milling, yielding uniform nanoholes with a hexagonal arrangement throughout the TiN layer with three different interpore distances. The subsequent anodic nanotube growth using ethylene-glycol-based electrolyte followed the pre-textured nanoholes, resulting in perfectly ordered nanotube layers (resembling honeycomb porous anodic alumina) without any point defects and with a thickness of approximately 2 μm over the whole area of the pattern.
Zobrazit více v PubMed
Assefpour-Dezfuly M., Vlachos C., Andrews E. H., J. Mater. Sci. 1984, 19, 3626–3639.
Zwilling V., Aucouturier M., Darque-Ceretti E., Electrochim. Acta 1999, 45, 921–929.
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P., Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18.
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed
Masuda H., Fukuda K., Science 1995, 268, 1466–1468. PubMed
Masuda H., Yamada H., Satoh M., Asoh H., Nakao M., Tamamura T., Appl. Phys. Lett. 1997, 71, 2770–2772.
Choi J., Wehrspohn R. B., Gösele U., Adv. Mater. 2003, 15, 1531–1534.
Ono S., Saito M., Asoh H., Electrochim. Acta 2005, 51, 827–833.
Chu S.-Z., Wada K., Inoue S., Isogai M., Yasumori A., Adv. Mater. 2005, 17, 2115–2119.
Lui N.-W., Datta A., Liu C.-Y., Peng C.-Y., Wang H.-H., Wang Y.-L., Adv. Mater. 2005, 17, 222–225.
Lee W., Ji R., Gösele U., Nielsch K., Nat. Mater. 2006, 5, 741–747. PubMed
Macak J. M., Albu S. P., Schmuki P., Phys. Status Solidi RRL 2007, 1, 181–183.
Zhang G., Huang H., Zhang Y., Chan H. L. W., Zhou L., Electrochem. Commun. 2007, 9, 2854–2858.
Li S., Zhang G., Guo D., Yu L., Zhang W., J. Phys. Chem. C 2009, 113, 12759–12765.
Chen C.-C., Chen J.-H., Chao C.-G., Say W. C., J. Mater. Sci. 2005, 40, 4053–4059.
Lu K., Tian Z., Geldmeier J. A., Electrochim. Acta 2011, 56, 6014–6020.
Albertina K. F., Tavaresb A., Pereyra I., Appl. Surf. Sci. 2013, 284, 772–779.
Sopha H., Knotek P., Jäger A., Macak J. M., Electrochim. Acta 2016, 190, 744–752.
Macak J. M., Jarosova M., Jäger A., Sopha H., Klementova M., Appl. Surf. Sci. 2016, 371, 607–612.
Choi J., Wehrspohn R. B., Lee J., Gösele U., Electrochim. Acta 2004, 49, 2645–2652.
Kondo T., Nagao S., Yanagishita T., Nguyen N. T., Lee K., Schmuki P., Masuda H., Electrochem. Commun. 2015, 50, 73–76.
Kondo T., Nagao S., Hirano S., Yanagishita T., Nguyen N. T., Schmuki P., Masuda H., Electrochem. Commun. 2016, 72, 100–103.
Chen B., Lu K., Tian Z., J. Mater. Chem. 2011, 21, 8835–8840.
Chen B., Lu K., Geldmeier J. A., Chem. Commun. 2011, 47, 10085–10087. PubMed
Chen B., Lu K., Langmuir 2011, 27, 12179–12185. PubMed
Vega V., Montero-Moreno J. M., Garcia J., Prida V. M., Rahimi W., Waleczek M., Bae C., Zierold R., Nielsch K., Electrochim. Acta 2016, 203, 51–58.
Sopha H., Hromadko L., Nechvilova K., Macak J. M., J. Electroanal. Chem. 2015, 759, 122–128.