Ideally Hexagonally Ordered TiO2 Nanotube Arrays

. 2017 Aug ; 6 (4) : 480-483. [epub] 20170704

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28794939

Ideally hexagonally ordered TiO2 nanotube layers were produced through the optimized anodization of Ti substrates. The Ti substrates were firstly covered with a TiN protecting layer prepared through atomic layer deposition (ALD). Pre-texturing of the TiN-protected Ti substrate on an area of 20×20 μm2 was carried out by focused ion beam (FIB) milling, yielding uniform nanoholes with a hexagonal arrangement throughout the TiN layer with three different interpore distances. The subsequent anodic nanotube growth using ethylene-glycol-based electrolyte followed the pre-textured nanoholes, resulting in perfectly ordered nanotube layers (resembling honeycomb porous anodic alumina) without any point defects and with a thickness of approximately 2 μm over the whole area of the pattern.

Zobrazit více v PubMed

Assefpour-Dezfuly M., Vlachos C., Andrews E. H., J. Mater. Sci. 1984, 19, 3626–3639.

Zwilling V., Aucouturier M., Darque-Ceretti E., Electrochim. Acta 1999, 45, 921–929.

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P., Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18.

Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed

Masuda H., Fukuda K., Science 1995, 268, 1466–1468. PubMed

Masuda H., Yamada H., Satoh M., Asoh H., Nakao M., Tamamura T., Appl. Phys. Lett. 1997, 71, 2770–2772.

Choi J., Wehrspohn R. B., Gösele U., Adv. Mater. 2003, 15, 1531–1534.

Ono S., Saito M., Asoh H., Electrochim. Acta 2005, 51, 827–833.

Chu S.-Z., Wada K., Inoue S., Isogai M., Yasumori A., Adv. Mater. 2005, 17, 2115–2119.

Lui N.-W., Datta A., Liu C.-Y., Peng C.-Y., Wang H.-H., Wang Y.-L., Adv. Mater. 2005, 17, 222–225.

Lee W., Ji R., Gösele U., Nielsch K., Nat. Mater. 2006, 5, 741–747. PubMed

Macak J. M., Albu S. P., Schmuki P., Phys. Status Solidi RRL 2007, 1, 181–183.

Zhang G., Huang H., Zhang Y., Chan H. L. W., Zhou L., Electrochem. Commun. 2007, 9, 2854–2858.

Li S., Zhang G., Guo D., Yu L., Zhang W., J. Phys. Chem. C 2009, 113, 12759–12765.

Chen C.-C., Chen J.-H., Chao C.-G., Say W. C., J. Mater. Sci. 2005, 40, 4053–4059.

Lu K., Tian Z., Geldmeier J. A., Electrochim. Acta 2011, 56, 6014–6020.

Albertina K. F., Tavaresb A., Pereyra I., Appl. Surf. Sci. 2013, 284, 772–779.

Sopha H., Knotek P., Jäger A., Macak J. M., Electrochim. Acta 2016, 190, 744–752.

Macak J. M., Jarosova M., Jäger A., Sopha H., Klementova M., Appl. Surf. Sci. 2016, 371, 607–612.

Choi J., Wehrspohn R. B., Lee J., Gösele U., Electrochim. Acta 2004, 49, 2645–2652.

Kondo T., Nagao S., Yanagishita T., Nguyen N. T., Lee K., Schmuki P., Masuda H., Electrochem. Commun. 2015, 50, 73–76.

Kondo T., Nagao S., Hirano S., Yanagishita T., Nguyen N. T., Schmuki P., Masuda H., Electrochem. Commun. 2016, 72, 100–103.

Chen B., Lu K., Tian Z., J. Mater. Chem. 2011, 21, 8835–8840.

Chen B., Lu K., Geldmeier J. A., Chem. Commun. 2011, 47, 10085–10087. PubMed

Chen B., Lu K., Langmuir 2011, 27, 12179–12185. PubMed

Vega V., Montero-Moreno J. M., Garcia J., Prida V. M., Rahimi W., Waleczek M., Bae C., Zierold R., Nielsch K., Electrochim. Acta 2016, 203, 51–58.

Sopha H., Hromadko L., Nechvilova K., Macak J. M., J. Electroanal. Chem. 2015, 759, 122–128.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...