hexagonal ordering
Dotaz
Zobrazit nápovědu
Particles of DeltaProCANC, a fusion of capsid (CA) and nucleocapsid (NC) protein of Mason-Pfizer monkey virus (M-PMV), which lacks the amino terminal proline, were reassembled in vitro and visualized by atomic force microscopy (AFM). The particles, of 83-84 nm diameter, exhibited ordered domains based on trigonal arrays of prominent rings with center to center distances of 8.7 nm. Imperfect closure of the lattice on the spherical surface was affected by formation of discontinuities. The lattice is consistent only with plane group p3 where one molecule is shared between contiguous rings. There are no pentameric clusters nor evidence that the particles are icosahedral. Tubular structures were also reassembled, in vitro, from two HIV fusion proteins, DeltaProCANC and CANC. The tubes were uniform in diameter, 40 nm, but varied in length to a maximum of 600 nm. They exhibited left handed helical symmetry based on a p6 hexagonal net. The organization of HIV fusion proteins in the tubes is significantly different than for the protein units in the particles of M-PMV DeltaProCANC.
- MeSH
- HIV * ultrastruktura MeSH
- lidé MeSH
- makromolekulární látky MeSH
- Masonův-Pfizerův opičí virus * ultrastruktura MeSH
- mikroskopie atomárních sil MeSH
- sestavení viru MeSH
- virion * ultrastruktura MeSH
- virové proteiny izolace a purifikace metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model.
Analysis of epidermal genes, proteins and lipids is important in the research and diagnosis of skin diseases. Although punch biopsy is the first-choice technique for the skin sampling, it is unnecessarily invasive for obtaining a sample just for the epidermal analysis. Here we compare two less invasive methods, suction blistering (SB) and tape stripping (TS), for the analysis of selected epidermal genes (quantitative real-time reverse transcription PCR, qRT-PCR), proteins (western blotting, WB), and lipids in ten healthy volunteers. TS provided significantly less material than SB and no viable epidermal layers could be obtained according to the reflectance confocal microscopy. Consistently, only the SC protein filaggrin and housekeeping GAPDH together with FLG and RPL13A mRNA were detected by TS. In the SB samples, WB and qRT-PCR could easily detect all the selected proteins (claudin-1, occludin, filaggrin, laminin and GAPDH) and genes (CLDN1, OCLN, FLG, LAMA3 and RPL13A), respectively. A single SB sample further provided enough of material for immunohistochemistry and lipid analyses, which was not feasible with the TS samples. Immunohistochemistry of the SB samples showed intact epidermal structure and a characteristic expression of claudin-1. Infrared spectroscopy showed well-ordered lipids with both orthorhombic and hexagonal packing and high-performance thin layer chromatography confirmed all lipid classes (including ceramide subclasses) in correct proportions. Taken together, SB represents a reliable sampling technique that can be utilized for multipurpose epidermal analyses in various studies.
- MeSH
- chromatografie na tenké vrstvě MeSH
- claudin-1 analýza MeSH
- dospělí MeSH
- epidermis chemie MeSH
- imunohistochemie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidy analýza MeSH
- messenger RNA analýza MeSH
- odsávání MeSH
- proteiny intermediálních filament analýza MeSH
- proteiny analýza MeSH
- puchýř MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.
- MeSH
- krysa rodu rattus MeSH
- mezenchymální kmenové buňky * metabolismus účinky léků cytologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- oxidační stres účinky léků MeSH
- polyethylenglykoly chemie MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: To perform a detailed topographical analysis of functional age-related changes over the retina. METHODS: Fifty-nine normal phakic subjects aged 10 to 69 years were divided into six groups, according to decade of age. mfERG traces were recorded from the central 60 degrees of the retina, with a resolution of 61 and 103 scaled hexagons. Group medians of peak amplitude and latency of the first- and second-order (first slice) responses were used to generate 3-D topographical maps. RESULTS: With age, there was a continuous loss of amplitude and delay of implicit time of the first- and the second-order response components, but the topography of the loss was not uniform across the retina. Trend analyses on ring group data showed a significant decrease in amplitude of first- and second-order responses although the age relationship of second-order responses was more complex. The loss of first-order kernel amplitude was generally accompanied by a rise in implicit time. Second-order kernel latencies showed no uniform alteration with age. CONCLUSIONS: Consistent with previous work, a steady loss of amplitude and increase of implicit time was observed with age. The topographical 3-D data, however, reveal age-related functional alterations in the retina beyond those found in ring averages, suggesting that these are masked by the standard analysis. Thus, the choice of physiologically coherent regions of interest may increase the sensitivity of detecting age-related change in multifocal analysis of retinal function
- MeSH
- dítě MeSH
- dospělí MeSH
- elektroretinografie MeSH
- financování organizované MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- následné studie MeSH
- referenční hodnoty MeSH
- retina anatomie a histologie fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- světelná stimulace MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- srovnávací studie MeSH