Novel insights on new particle formation derived from a pan-european observing system

. 2018 Jan 24 ; 8 (1) : 1482. [epub] 20180124

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29367716
Odkazy

PubMed 29367716
PubMed Central PMC5784154
DOI 10.1038/s41598-017-17343-9
PII: 10.1038/s41598-017-17343-9
Knihovny.cz E-zdroje

The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.

Aerodyne Research Inc Billerica MA USA

Charles University Faculty of Mathematics and Physics Dept of Atmospheric Physcis Prague Czechia

Department of Environmental Science and Analytical Chemistry Stockholm University 10691 Stockholm Sweden

Department of Environmental Sciences Center of Excellence in Environmental Studies King Abdulaziz University PO Box 80203 21589 Jeddah Saudi Arabia

Department of Evolutionary Biology Ecology and Environmental Sciences Universitat de Barcelona Av Diagonal 643 08028 Barcelona Catalonia Spain

Department of Physics University of Helsinki P O Box 64 00014 Helsinki Finland

Division of Ergonomics and Aerosol Technology Lund University Box 118 SE 22100 Lund Sweden

Division of Nuclear Physics Lund University Box 118 SE 22100 Lund Sweden

European Commission Joint Research Centre Institute for Environment and Sustainability 21027 Italy

European Commission Joint Research Centre Italy

Finnish Meteorological Institute Climate Change Unit P O Box 503 00101 Helsinki Finland

Institute of Marine Science Consejo Superior de Investigaciones Científicas Barcelona Spain

Laboratoire d'Aérologie Toulouse France

Laboratoire de Météorologie Physique CNRS Université Blaise Pascal UMR6016 63117 Clermont Ferrand France

Laboratory of Atmospheric Chemistry Paul Scherrer Institute 5232 PSI Villigen Switzerland

Leibniz Institute for Tropospheric Research Permoserstr 15 04318 Leipzig Germany

National Centre for Atmospheric Science Division of Environmental Health and Risk Management School of Geography Earth and Environmental Sciences University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom

Netherlands Organisation for Applied Scientific Research TNO Princetonlaan 6 3508 TA Utrecht The Netherlands

NOAA Earth System Laboratory and CIRES University of Colorado Boulder USA

School of Earth Atmospheric and Environmental Sciences The University of Manchester Manchester UK

School of Physics Centre for Climate and Air Pollution Studies National University of Ireland Galway University Road Galway Galway Ireland

Univ Grenoble Alpes CNRS IRD INPG Institut des Géosciences de l'Environnement Grenoble France

Univ Grenoble Alpes CNRS IRD Observatoire des Sciences de l'Univers Grenoble France

University of Eastern Finland Department of Applied Physics P O Box 1627 FIN 70211 Kuopio Finland

Zobrazit více v PubMed

Spracklen DV, et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 2008;35:L06808.

Merikanto J, et al. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009;9:8601–8616. doi: 10.5194/acp-9-8601-2009. DOI

Kulmala M, et al. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Rev. Phys. Chem. 2014;65:21–37. doi: 10.1146/annurev-physchem-040412-110014. PubMed DOI

Weber RJ, et al. Measured atmospheric new particle formation rates: Implications for nucleation mechanisms. Chem. Eng. Commun. 1996;151:53–64. doi: 10.1080/00986449608936541. DOI

Sipilä M, et al. The role of sulfuric acid in atmospheric nucleation. Science. 2010;32:1243–1246. doi: 10.1126/science.1180315. PubMed DOI

Kirkby J, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature. 2011;476:429–433. doi: 10.1038/nature10343. PubMed DOI

Chen M, et al. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proc. Natl Acad. Sci. USA. 2012;109:18713–18718. doi: 10.1073/pnas.1210285109. PubMed DOI PMC

Almeida J, et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature. 2013;502:359–363. doi: 10.1038/nature12663. PubMed DOI PMC

Kavouras IG, Mihalopoulos N, Stephanou EG. Formation of atmospheric particles from organic acids produced by forests. Nature. 1998;395:683–686. doi: 10.1038/27179. DOI

Schobesberger S, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Nat. Acad. Sci. USA. 2013;110:17223–17228. doi: 10.1073/pnas.1306973110. PubMed DOI PMC

Riccobono F, et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science. 2014;344:717–721. doi: 10.1126/science.1243527. PubMed DOI

Ehn M, et al. A large source of low-volatility secondary organic aerosol. Nature. 2014;506:476–479. doi: 10.1038/nature13032. PubMed DOI

Jokinen T, et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proc. Nat. Acad. Sci. USA. 2015;112:7123–7128. doi: 10.1073/pnas.1423977112. PubMed DOI PMC

Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature533, 10.1038/nature17953 (2016). PubMed PMC

Tröstl, J. et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533, 10.1038/nature18271 (2016). PubMed PMC

Bianchi, F. et al. New particle formation in the free troposphere: a question of chemistry and timing. Science352, 10.1126/science.aad5456 (2016). PubMed

Dunne, E. M. et al. Global particle formation from CERN CLOUD measurements. Science, 10.1126/science.aaf264 (2016). PubMed

Kürten A, et al. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. J. Geophys. Res. Atmos. 2016;121(12):377–12,400.

Gordon H, et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Nat. Acad. Sci. 2016;113:12053–12058. doi: 10.1073/pnas.1602360113. PubMed DOI PMC

O´Dowd C, et al. Marine aerosol formation from biogenic iodine emissions. Nature. 2002;417:632–636. doi: 10.1038/nature00775. PubMed DOI

Sipilä, M. et al. Molecular-scale evidence of aerosolparticle formation via sequential addition of HIO3. Nature1-3, 10.1038/nature19314 (2016). PubMed PMC

Dawson ML, et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc. Nat. Acad. Sci. USA. 2012;109:18719–18724. doi: 10.1073/pnas.1211878109. PubMed DOI PMC

Riipinen I, et al. The contribution of organics to atmospheric nanoparticle growth. Nature Geosci. 2012;5:453–458. doi: 10.1038/ngeo1499. DOI

Kulmala M, et al. Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 2009;9:2825–2841. doi: 10.5194/acp-9-2825-2009. DOI

Tørseth K, et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric compositionchange during 1972–2009. Atmos. Chem. Phys. 2012;12:5447–5481. doi: 10.5194/acp-12-5447-2012. DOI

Henne S, et al. Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys. 2010;10:3561–3581. doi: 10.5194/acp-10-3561-2010. DOI

Asmi A, et al. Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmos. Chem. Phys. 2011;11:5505–5538. doi: 10.5194/acp-11-5505-2011. DOI

Beddows DCS, et al. Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmos. Chem. Phys. 2014;14:4327–4348. doi: 10.5194/acp-14-4327-2014. DOI

Zhang Q, et al. Insights into nucleation burst and particle growth in Pittsburgh based on aerosol mass spectrometry. Environ. Sci. Technol. 2004;38:4797–4809. doi: 10.1021/es035417u. PubMed DOI

Zhang Q, et al. Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J. Geophys. Res. 2005;110:D07S09.

Manninen HE, et al. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmos. Chem. Phys. 2010;10:7907–7927. doi: 10.5194/acp-10-7907-2010. DOI

Kulmala M, Kerminen V-M. On the growth of atmospheric nanoparticles. Atmos. Res. 2008;90:132–150. doi: 10.1016/j.atmosres.2008.01.005. DOI

Kerminen V-M, Kulmala M. Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 2002;33:609–622. doi: 10.1016/S0021-8502(01)00194-X. DOI

Hamed A, et al. The role of relative humidity in continental new particle formation. J. Geophys. Res. 2011;116:D03202. doi: 10.1029/2010JD014186. DOI

Pirjola L, et al. Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison. J. Aerosol Sci. 1999;30:1079–1094. doi: 10.1016/S0021-8502(98)00776-9. DOI

Wexler AS, Lurmann FW, Seinfeld JH. Modelling Urban and Regional Aerosols—I. Model Development. Atmos. Environ. 1994;28:531–546. doi: 10.1016/1352-2310(94)90129-5. DOI

Stanier CO, Khlystov AY, Pandis SN. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase and aerosol parameters. Aerosol Sci. Tech. 2004;38:253–264. doi: 10.1080/02786820390229570. DOI

Crippa M, et al. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 2016;16:3825–3841. doi: 10.5194/acp-16-3825-2016. DOI

Eeftens M, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012;46:11195–11205. doi: 10.1021/es301948k. PubMed DOI

EAA. Air pollution from agriculture: EU Exceeds International Limit in 2014. ISSN 1977–8449 (2016).

Guenther AB, et al. The Model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012;5:1471–1492. doi: 10.5194/gmd-5-1471-2012. DOI

Sindelarova K, et al. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014;14:9317–9341. doi: 10.5194/acp-14-9317-2014. DOI

Steinbrecher R, et al. Intra- and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries. Atmos. Environ. 2009;43:1380–1391. doi: 10.1016/j.atmosenv.2008.09.072. DOI

Oderbolz DC, et al. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmos. Chem. Phys. 2013;13:1689–1712. doi: 10.5194/acp-13-1689-2013. DOI

Koohkan MR, Bocquet M, Roustan Y, Kim Y, Seigneur C. Estimation of volatile organic compound emissions for Europe using data assimilation. Atmos. Chem. Phys. 2013;13:5887–5905. doi: 10.5194/acp-13-5887-2013. DOI

Junninen H, et al. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010;3:1039–1053. doi: 10.5194/amt-3-1039-2010. DOI

Kurten T, et al. The effect of H2SO4-amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmos. Chem. Phys. 2011;11:3007–3019. doi: 10.5194/acp-11-3007-2011. DOI

Jokinen T, et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 2012;12:4117–4125. doi: 10.5194/acp-12-4117-2012. DOI

Jayne JT, et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 2000;33:49–70. doi: 10.1080/027868200410840. DOI

Drewnick F, et al. A new Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS): Instrument Description and First Field Deployment. Aerosol Sci. Technol. 2005;39:637–658. doi: 10.1080/02786820500182040. DOI

De Carlo P, et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 2006;78:8281–8289. doi: 10.1021/ac061249n. PubMed DOI

Jimenez JL, et al. New particle formation from photooxidation of diiodomethane. J. Geophys. Res. 2003;108(D10):4318. doi: 10.1029/2002JD002452. DOI

Allan JD, et al. Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an aerodyne aerosol mass spectrometer. Atmos. Chem. Phys. 2006;6:315–327. doi: 10.5194/acp-6-315-2006. DOI

Crippa M, et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 2014;14:6159–6176. doi: 10.5194/acp-14-6159-2014. DOI

Kulmala M, et al. Direct observations of atmospheric aerosol nucleation. Science. 2013;339:943–946. doi: 10.1126/science.1227385. PubMed DOI

Riipinen I, et al. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 2011;11:3865–3878. doi: 10.5194/acp-11-3865-2011. DOI

Paasonen P, et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geosci. 2013;6:438–442. doi: 10.1038/ngeo1800. DOI

Mentel TF, et al. Photochemical production of aerosols from real plant emissions. Atmos. Chem. Phys. 2009;9:4387–4406. doi: 10.5194/acp-9-4387-2009. DOI

Laaksonen A, et al. The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 2008;8:2657–2665. doi: 10.5194/acp-8-2657-2008. DOI

Pieber SM, et al. Inorganic Salt Interference on CO2 in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environ. Sci. Technol. 2016;50:10494–10503. doi: 10.1021/acs.est.6b01035. PubMed DOI

Makela JM, et al. Chemical composition of aerosol during particle formation events in boreal forest. Tellus. 2001;53B:380–393. doi: 10.3402/tellusb.v53i4.16610. DOI

Dal Maso M, et al. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J. Geophys. 11 Res. 2002;107(D19):8097. doi: 10.1029/2001JD001053. DOI

Dall’Osto M, et al. On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmos. Chem. Phys. 2013;13:741–59. doi: 10.5194/acp-13-741-2013. DOI

Beddows DCS, Dall’Osto M, Harrison RM. Cluster Analysis of Rural, Urban, and Curbside Atmospheric Particle Size Data. Environ. Sci. Technol. 2009;43:4694–4700. doi: 10.1021/es803121t. PubMed DOI

Allan JD, et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 2004;35:909–922. doi: 10.1016/j.jaerosci.2004.02.007. DOI

Beddows DCS, Harrison RM, Green DC, Fuller GW. Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmos. Chem. Phys. 2015;15:10107–10125. doi: 10.5194/acp-15-10107-2015. DOI

Reff A, Eberly SI, Bhave PV. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. JAWMA. 2007;57:146–154. PubMed

Ogulei D, Hopke PK, Wallace LA. Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air. 2006;16:204–215. doi: 10.1111/j.1600-0668.2006.00418.x. PubMed DOI

Ogulei D, et al. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos. Environ. 2006;40:S396–S410. doi: 10.1016/j.atmosenv.2005.11.075. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Atmospheric new particle formation identifier using longitudinal global particle number size distribution data

. 2024 Nov 16 ; 11 (1) : 1239. [epub] 20241116

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...