Novel insights on new particle formation derived from a pan-european observing system
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29367716
PubMed Central
PMC5784154
DOI
10.1038/s41598-017-17343-9
PII: 10.1038/s41598-017-17343-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.
Aerodyne Research Inc Billerica MA USA
Charles University Faculty of Mathematics and Physics Dept of Atmospheric Physcis Prague Czechia
Department of Physics University of Helsinki P O Box 64 00014 Helsinki Finland
Division of Ergonomics and Aerosol Technology Lund University Box 118 SE 22100 Lund Sweden
Division of Nuclear Physics Lund University Box 118 SE 22100 Lund Sweden
European Commission Joint Research Centre Institute for Environment and Sustainability 21027 Italy
European Commission Joint Research Centre Italy
Finnish Meteorological Institute Climate Change Unit P O Box 503 00101 Helsinki Finland
Institute of Marine Science Consejo Superior de Investigaciones Científicas Barcelona Spain
Laboratoire d'Aérologie Toulouse France
Laboratory of Atmospheric Chemistry Paul Scherrer Institute 5232 PSI Villigen Switzerland
Leibniz Institute for Tropospheric Research Permoserstr 15 04318 Leipzig Germany
NOAA Earth System Laboratory and CIRES University of Colorado Boulder USA
School of Earth Atmospheric and Environmental Sciences The University of Manchester Manchester UK
Univ Grenoble Alpes CNRS IRD INPG Institut des Géosciences de l'Environnement Grenoble France
Univ Grenoble Alpes CNRS IRD Observatoire des Sciences de l'Univers Grenoble France
University of Eastern Finland Department of Applied Physics P O Box 1627 FIN 70211 Kuopio Finland
Zobrazit více v PubMed
Spracklen DV, et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 2008;35:L06808.
Merikanto J, et al. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009;9:8601–8616. doi: 10.5194/acp-9-8601-2009. DOI
Kulmala M, et al. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Rev. Phys. Chem. 2014;65:21–37. doi: 10.1146/annurev-physchem-040412-110014. PubMed DOI
Weber RJ, et al. Measured atmospheric new particle formation rates: Implications for nucleation mechanisms. Chem. Eng. Commun. 1996;151:53–64. doi: 10.1080/00986449608936541. DOI
Sipilä M, et al. The role of sulfuric acid in atmospheric nucleation. Science. 2010;32:1243–1246. doi: 10.1126/science.1180315. PubMed DOI
Kirkby J, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature. 2011;476:429–433. doi: 10.1038/nature10343. PubMed DOI
Chen M, et al. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proc. Natl Acad. Sci. USA. 2012;109:18713–18718. doi: 10.1073/pnas.1210285109. PubMed DOI PMC
Almeida J, et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature. 2013;502:359–363. doi: 10.1038/nature12663. PubMed DOI PMC
Kavouras IG, Mihalopoulos N, Stephanou EG. Formation of atmospheric particles from organic acids produced by forests. Nature. 1998;395:683–686. doi: 10.1038/27179. DOI
Schobesberger S, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Nat. Acad. Sci. USA. 2013;110:17223–17228. doi: 10.1073/pnas.1306973110. PubMed DOI PMC
Riccobono F, et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science. 2014;344:717–721. doi: 10.1126/science.1243527. PubMed DOI
Ehn M, et al. A large source of low-volatility secondary organic aerosol. Nature. 2014;506:476–479. doi: 10.1038/nature13032. PubMed DOI
Jokinen T, et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proc. Nat. Acad. Sci. USA. 2015;112:7123–7128. doi: 10.1073/pnas.1423977112. PubMed DOI PMC
Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature533, 10.1038/nature17953 (2016). PubMed PMC
Tröstl, J. et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533, 10.1038/nature18271 (2016). PubMed PMC
Bianchi, F. et al. New particle formation in the free troposphere: a question of chemistry and timing. Science352, 10.1126/science.aad5456 (2016). PubMed
Dunne, E. M. et al. Global particle formation from CERN CLOUD measurements. Science, 10.1126/science.aaf264 (2016). PubMed
Kürten A, et al. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. J. Geophys. Res. Atmos. 2016;121(12):377–12,400.
Gordon H, et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Nat. Acad. Sci. 2016;113:12053–12058. doi: 10.1073/pnas.1602360113. PubMed DOI PMC
O´Dowd C, et al. Marine aerosol formation from biogenic iodine emissions. Nature. 2002;417:632–636. doi: 10.1038/nature00775. PubMed DOI
Sipilä, M. et al. Molecular-scale evidence of aerosolparticle formation via sequential addition of HIO3. Nature1-3, 10.1038/nature19314 (2016). PubMed PMC
Dawson ML, et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc. Nat. Acad. Sci. USA. 2012;109:18719–18724. doi: 10.1073/pnas.1211878109. PubMed DOI PMC
Riipinen I, et al. The contribution of organics to atmospheric nanoparticle growth. Nature Geosci. 2012;5:453–458. doi: 10.1038/ngeo1499. DOI
Kulmala M, et al. Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 2009;9:2825–2841. doi: 10.5194/acp-9-2825-2009. DOI
Tørseth K, et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric compositionchange during 1972–2009. Atmos. Chem. Phys. 2012;12:5447–5481. doi: 10.5194/acp-12-5447-2012. DOI
Henne S, et al. Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys. 2010;10:3561–3581. doi: 10.5194/acp-10-3561-2010. DOI
Asmi A, et al. Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmos. Chem. Phys. 2011;11:5505–5538. doi: 10.5194/acp-11-5505-2011. DOI
Beddows DCS, et al. Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmos. Chem. Phys. 2014;14:4327–4348. doi: 10.5194/acp-14-4327-2014. DOI
Zhang Q, et al. Insights into nucleation burst and particle growth in Pittsburgh based on aerosol mass spectrometry. Environ. Sci. Technol. 2004;38:4797–4809. doi: 10.1021/es035417u. PubMed DOI
Zhang Q, et al. Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J. Geophys. Res. 2005;110:D07S09.
Manninen HE, et al. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmos. Chem. Phys. 2010;10:7907–7927. doi: 10.5194/acp-10-7907-2010. DOI
Kulmala M, Kerminen V-M. On the growth of atmospheric nanoparticles. Atmos. Res. 2008;90:132–150. doi: 10.1016/j.atmosres.2008.01.005. DOI
Kerminen V-M, Kulmala M. Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 2002;33:609–622. doi: 10.1016/S0021-8502(01)00194-X. DOI
Hamed A, et al. The role of relative humidity in continental new particle formation. J. Geophys. Res. 2011;116:D03202. doi: 10.1029/2010JD014186. DOI
Pirjola L, et al. Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison. J. Aerosol Sci. 1999;30:1079–1094. doi: 10.1016/S0021-8502(98)00776-9. DOI
Wexler AS, Lurmann FW, Seinfeld JH. Modelling Urban and Regional Aerosols—I. Model Development. Atmos. Environ. 1994;28:531–546. doi: 10.1016/1352-2310(94)90129-5. DOI
Stanier CO, Khlystov AY, Pandis SN. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase and aerosol parameters. Aerosol Sci. Tech. 2004;38:253–264. doi: 10.1080/02786820390229570. DOI
Crippa M, et al. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 2016;16:3825–3841. doi: 10.5194/acp-16-3825-2016. DOI
Eeftens M, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012;46:11195–11205. doi: 10.1021/es301948k. PubMed DOI
EAA. Air pollution from agriculture: EU Exceeds International Limit in 2014. ISSN 1977–8449 (2016).
Guenther AB, et al. The Model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012;5:1471–1492. doi: 10.5194/gmd-5-1471-2012. DOI
Sindelarova K, et al. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014;14:9317–9341. doi: 10.5194/acp-14-9317-2014. DOI
Steinbrecher R, et al. Intra- and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries. Atmos. Environ. 2009;43:1380–1391. doi: 10.1016/j.atmosenv.2008.09.072. DOI
Oderbolz DC, et al. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmos. Chem. Phys. 2013;13:1689–1712. doi: 10.5194/acp-13-1689-2013. DOI
Koohkan MR, Bocquet M, Roustan Y, Kim Y, Seigneur C. Estimation of volatile organic compound emissions for Europe using data assimilation. Atmos. Chem. Phys. 2013;13:5887–5905. doi: 10.5194/acp-13-5887-2013. DOI
Junninen H, et al. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010;3:1039–1053. doi: 10.5194/amt-3-1039-2010. DOI
Kurten T, et al. The effect of H2SO4-amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmos. Chem. Phys. 2011;11:3007–3019. doi: 10.5194/acp-11-3007-2011. DOI
Jokinen T, et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 2012;12:4117–4125. doi: 10.5194/acp-12-4117-2012. DOI
Jayne JT, et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 2000;33:49–70. doi: 10.1080/027868200410840. DOI
Drewnick F, et al. A new Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS): Instrument Description and First Field Deployment. Aerosol Sci. Technol. 2005;39:637–658. doi: 10.1080/02786820500182040. DOI
De Carlo P, et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 2006;78:8281–8289. doi: 10.1021/ac061249n. PubMed DOI
Jimenez JL, et al. New particle formation from photooxidation of diiodomethane. J. Geophys. Res. 2003;108(D10):4318. doi: 10.1029/2002JD002452. DOI
Allan JD, et al. Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an aerodyne aerosol mass spectrometer. Atmos. Chem. Phys. 2006;6:315–327. doi: 10.5194/acp-6-315-2006. DOI
Crippa M, et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 2014;14:6159–6176. doi: 10.5194/acp-14-6159-2014. DOI
Kulmala M, et al. Direct observations of atmospheric aerosol nucleation. Science. 2013;339:943–946. doi: 10.1126/science.1227385. PubMed DOI
Riipinen I, et al. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 2011;11:3865–3878. doi: 10.5194/acp-11-3865-2011. DOI
Paasonen P, et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geosci. 2013;6:438–442. doi: 10.1038/ngeo1800. DOI
Mentel TF, et al. Photochemical production of aerosols from real plant emissions. Atmos. Chem. Phys. 2009;9:4387–4406. doi: 10.5194/acp-9-4387-2009. DOI
Laaksonen A, et al. The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 2008;8:2657–2665. doi: 10.5194/acp-8-2657-2008. DOI
Pieber SM, et al. Inorganic Salt Interference on CO2 in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environ. Sci. Technol. 2016;50:10494–10503. doi: 10.1021/acs.est.6b01035. PubMed DOI
Makela JM, et al. Chemical composition of aerosol during particle formation events in boreal forest. Tellus. 2001;53B:380–393. doi: 10.3402/tellusb.v53i4.16610. DOI
Dal Maso M, et al. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J. Geophys. 11 Res. 2002;107(D19):8097. doi: 10.1029/2001JD001053. DOI
Dall’Osto M, et al. On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmos. Chem. Phys. 2013;13:741–59. doi: 10.5194/acp-13-741-2013. DOI
Beddows DCS, Dall’Osto M, Harrison RM. Cluster Analysis of Rural, Urban, and Curbside Atmospheric Particle Size Data. Environ. Sci. Technol. 2009;43:4694–4700. doi: 10.1021/es803121t. PubMed DOI
Allan JD, et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 2004;35:909–922. doi: 10.1016/j.jaerosci.2004.02.007. DOI
Beddows DCS, Harrison RM, Green DC, Fuller GW. Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmos. Chem. Phys. 2015;15:10107–10125. doi: 10.5194/acp-15-10107-2015. DOI
Reff A, Eberly SI, Bhave PV. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. JAWMA. 2007;57:146–154. PubMed
Ogulei D, Hopke PK, Wallace LA. Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air. 2006;16:204–215. doi: 10.1111/j.1600-0668.2006.00418.x. PubMed DOI
Ogulei D, et al. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos. Environ. 2006;40:S396–S410. doi: 10.1016/j.atmosenv.2005.11.075. DOI