Atmospheric new particle formation identifier using longitudinal global particle number size distribution data
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
S-MIP-22-57
Lietuvos Mokslo Taryba (Research Council of Lithuania)
S-MIP-22-57
Lietuvos Mokslo Taryba (Research Council of Lithuania)
S-MIP-22-57
Lietuvos Mokslo Taryba (Research Council of Lithuania)
101057497
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
LM2023030
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39550387
PubMed Central
PMC11569151
DOI
10.1038/s41597-024-04079-1
PII: 10.1038/s41597-024-04079-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Atmospheric new particle formation (NPF) is a naturally occurring phenomenon, during which high concentrations of sub-10 nm particles are created through gas to particle conversion. The NPF is observed in multiple environments around the world. Although it has observable influence onto annual total and ultrafine particle number concentrations (PNC and UFP, respectively), only limited epidemiological studies have investigated whether these particles are associated with adverse health effects. One plausible reason for this limitation may be related to the absence of NPF identifiers available in UFP and PNC data sets. Until recently, the regional NPF events were usually identified manually from particle number size distribution contour plots. Identification of NPF across multi-annual and multiple station data sets remained a tedious task. In this work, we introduce a regional NPF identifier, created using an automated, machine learning based algorithm. The regional NPF event tag was created for 65 measurement sites globally, covering the period from 1996 to 2023. The discussed data set can be used in future studies related to regional NPF.
Andalusian Institute for Earth System Research University of Granada Granada Spain
ANDRA DISTEC EES Observatoire Pérenne de l'Environnement Bure France
Center for Physical Sciences and Technology Vilnius Lithuania
Centre for Cardiovascular Research Partner Site Munich Heart Alliance Munich Germany
Climate and Atmosphere Research Center The Cyprus Institute Nicosia Cyprus
Department of Atmospheric Sciences University of Utah Salt Lake City USA
Department of Environment CIEMAT Madrid Spain
Department of Physics University of Malta Msida Malta
Division of Physics Division of Combustion Physics Lund University Lund Sweden
Environmental Science Center University of Augsburg Augsburg Germany
European Commission Joint Research Centre Ispra Italy
Forecast Research Division National Institute of Meterological Sciences Seogwipo Korea
German Environment Agency Berlin Germany
Institut Scientifique de Service Public Liege Belgium
Institute for Medical Research and Occupational Health Zagreb Croatia
Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Atmospheric Sciences and Climate ISAC Bologna Italy
Institute of Atmospheric Sciences and Climate Lecce Italy
Institute of Environmental Assessment and Water Research Barcelona Spain
Laboratoire de Physique de Clermont Auvergne UMR6533 CNRS UCA Aubière France
Laboratory of Atmospheric Chemistry Paul Scherrer Institute Villigen PSI Switzerland
NIHR HPRU in Environmental Exposures and Health Imperial College London London United Kingdom
SIOS Knowledge Centre Svalbard science centre Longyearbyen Longyearbyen Norway
The Lisbon Council Brussels Belgium
The Netherlands Institute of Applied Scientific Research Utrecht Netherlands
Univ Grenoble CNRS IRD IGE Grenoble France
Univ Lille CNRS UMR 8518 Laboratoire d'Optique Atmosphérique Lille France
Zobrazit více v PubMed
Chen, R. et al. Beyond PM2. 5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects1860(12), 2844–2855 (2016). PubMed
Kwon, H. S., Ryu, M. H. & Carlsten, C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & molecular medicine52(3), 318–328 (2020). PubMed PMC
Peters, A., Wichmann, H. E., Tuch, T., Heinrich, J. & Heyder, J. Respiratory effects are associated with the number of ultrafine particles. American journal of respiratory and critical care medicine155(4), 1376–1383 (1997). PubMed
Schwarz, M. et al. Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints in three German cities. Environment International178, 108032 (2023). PubMed
Abdillah, S. F. & Wang, Y. F. Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health. Environmental Research218, 115061 (2023). PubMed
Cassee, F. et al. 2019. White Paper: Ambient ultrafine particles: evidence for policy makers.
Kerminen, V.-M. et al. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos. Chem. Phys.12, 12037–12059, 10.5194/acp-12-12037-2012 (2012).
Garcia-Marlès, M. et al. Inter-annual trends of ultrafine particles in urban Europe. Environment international185, 108510 (2024). PubMed
Liu, X. et al. Ambient air particulate total lung deposited surface area (LDSA) levels in urban Europe. Science of the Total Environment898, 165466 (2023). PubMed
Rose, C. et al. Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics Discussions2021, 1–69 (2021).
Savadkoohi, M. et al. The variability of mass concentrations and source apportionment analysis of equivalent black carbon across urban Europe. Environment international178, 108081 (2023). PubMed
Birmili, W. et al. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN). Earth System Science Data, p.355 (2016).
Alonso-Blanco, E. et al. Temporal and spatial variability of atmospheric particle number size distributions across Spain. Atmospheric environment190, 146–160 (2018).
Hopke, P. K., Feng, Y. & Dai, Q. Source apportionment of particle number concentrations: A global review. Science of the Total Environment819, 153104 (2022). PubMed
Lopes, M., Russo, A., Monjardino, J., Gouveia, C. & Ferreira, F. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmospheric Pollution Research10(5), 1454–1463 (2019a).
Lopes, M., Russo, A., Gouveia, C. & Ferreira, F. Monitoring of ultrafine particles in the surrounding urban area of in-land passenger ferries. Journal of Environmental Protection10(06), 838 (2019b).
Seto, T. et al. New particle formation and growth associated with East-Asian long-range transportation observed at Fukue Island, Japan in March 2012. Atmospheric Environment74, 29–36 (2013).
Wallace, L. & Ott, W. Personal exposure to ultrafine particles. Journal of exposure science & environmental epidemiology21(1), 20–30 (2011). PubMed
Wang, D. et al. Significant ultrafine particle emissions from residential solid fuel combustion. Science of The Total Environment715, 136992 (2020). PubMed
Kulmala, M. et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science35(2), 143–176 (2004).
Ström, J., Engvall, A. C., Delbart, F., Krejci, R. & Treffeisen, R. On small particles in the Arctic summer boundary layer: observations at two different heights near Ny-Ålesund, Svalbard. Tellus B: Chemical and Physical Meteorology61(2), 473–482 (2009).
Ehn, M. et al. 2010. Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research: Atmospheres, 115(D18).
Vana, M. et al. Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research90(2–4), 278–286 (2008).
Hofman, J. et al. Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network. Atmospheric environment136, 68–81 (2016).
Hussein, T. et al. Observation of regional new particle formation in the urban atmosphere. Tellus B: Chemical and Physical Meteorology60(4), 509–521 (2008).
Kulmala, M. et al. Quiet new particle formation in the atmosphere. Frontiers in Environmental Science10, 912385 (2022).
Größ, J. et al. Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters. Atmos. Chem. Phys.18, 1835–1861, 10.5194/acp-18-1835-2018 (2018).
Joutsensaari, J. et al. Identification of new particle formation events with deep learning. Atmospheric Chemistry and Physics18(13), 9597–9615 (2018).
Su, P. et al. New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics22(2), 1293–1309 (2022).
Dall’Osto, M. et al. Novel insights on new particle formation derived from a pan-european observing system. Scientific reports8(1), 1482 (2018). PubMed PMC
Pushpawela, B., Jayaratne, R. & Morawska, L. Temporal distribution and other characteristics of new particle formation events in an urban environment. Environmental Pollution233, 552–560 (2018). PubMed
Wang, Z. B. et al. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics13(24), 12495–12506 (2013).
Rivas, I. et al. Associations between sources of particle number and mortality in four European cities. Environment International155, 106662 (2021). PubMed
Wiedensohler, A. et al. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques5(3), 657–685 (2012).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature521(7553), 436–444 (2015). PubMed
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778 (2016).
Howard, J. & Gugger, S. Deep Learning for Coders with fastai and PyTorch. O’Reilly Media (2020a).
Howard, J. & Gugger, S. Fastai: a layered API for deep learning. Information11(2), 108 (2020b).
Kecorius, S. et al. Atmospheric new particle formation identifier using longitudinal global particle number size distribution data figshare 10.6084/m9.figshare.25375978.v2 (2024). PubMed PMC
R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2013).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: https://qgis.org [Accessed: 3 April 2023] (2022).