• Je něco špatně v tomto záznamu ?

Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution

E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zbořil, MA. Karakassides,

. 2013 ; 261 (-) : 295-306.

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14064025

MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14064025
003      
CZ-PrNML
005      
20140709122349.0
007      
ta
008      
140704s2013 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jhazmat.2013.07.046 $2 doi
035    __
$a (PubMed)23959249
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Petala, Eleni $u Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 1192/12, 771 46 Olomouc, Czech Republic.
245    10
$a Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution / $c E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zbořil, MA. Karakassides,
520    9_
$a MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model.
650    _2
$a chrom $x chemie $7 D002857
650    _2
$a železo $x chemie $7 D007501
650    _2
$a poréznost $7 D016062
650    _2
$a oxid křemičitý $x chemie $7 D012822
650    _2
$a roztoky $7 D012996
650    _2
$a chemické látky znečišťující vodu $x chemie $7 D014874
650    _2
$a čištění vody $x metody $7 D018508
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dimos, Konstantinos
700    1_
$a Douvalis, Alexios
700    1_
$a Bakas, Thomas
700    1_
$a Tucek, Jiri
700    1_
$a Zbořil, Radek
700    1_
$a Karakassides, Michael A
773    0_
$w MED00180297 $t Journal of hazardous materials $x 1873-3336 $g Roč. 261, č. - (2013), s. 295-306
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23959249 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140704 $b ABA008
991    __
$a 20140709122641 $b ABA008
999    __
$a ok $b bmc $g 1031509 $s 862757
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 261 $c - $d 295-306 $i 1873-3336 $m Journal of hazardous materials $n J Hazard Mater $x MED00180297
LZP    __
$a Pubmed-20140704

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...