Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella

. 2018 Mar ; 63 (2) : 147-153. [epub] 20170815

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28812258
Odkazy

PubMed 28812258
DOI 10.1007/s12223-017-0543-6
PII: 10.1007/s12223-017-0543-6
Knihovny.cz E-zdroje

Azospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB. Two predicted flhB genes are present in the genome of A. brasilense Sp245 (accession nos. HE577327-HE577333). Experimental evidence obtained here indicates that the chromosomal coding sequence (CDS) AZOBR_150177 (flhB1) of Sp245 is essential for the production of both types of flagella. In an flhB1:: Omegon-Km mutant, Sp245.1063, defects in polar and lateral flagellar assembly and motility were complemented by expressing the wild-type flhB1 gene from plasmid pRK415. It was found that Sp245.1063 lost the capacity for slight but statistically significant decrease in mean cell length in response to transfer from solid to liquid media, and vice versa; in the complemented mutant, this capacity was restored. It was also shown that after the acquisition of the pRK415-harbored downstream CDS AZOBR_150176, cells of Sp245 and Sp245.1063 ceased to elongate on solid media. These initial data suggest that the AZOBR_150176-encoded putative multisensory hybrid sensor histidine kinase-response regulator, in concert with FlhB1, plays a role in morphological response of azospirilla to changes in the hardness of a milieu.

Zobrazit více v PubMed

J Bacteriol. 1998 Mar;180(5):1248-55 PubMed

Plasmid. 1978 Sep;1(4):584-8 PubMed

J Bacteriol. 2006 Jun;188(12):4169-82 PubMed

Annu Rev Microbiol. 2011;65:261-86 PubMed

Biochim Biophys Acta. 2014 Aug;1843(8):1642-8 PubMed

J Bacteriol. 2006 Jan;188(2):542-55 PubMed

PLoS Genet. 2011 Dec;7(12):e1002430 PubMed

J Biol Chem. 2005 Dec 16;280(50):41236-42 PubMed

J Bacteriol. 2008 Oct;190(19):6365-75 PubMed

Res Microbiol. 2007 Jul-Aug;158(6):521-8 PubMed

Microbiol Res. 2009;164(2):149-56 PubMed

Genetika. 2013 Aug;49(8):1013-6 PubMed

J Bacteriol. 1995 Oct;177(19):5419-26 PubMed

Gene. 1989;76(2):215-26 PubMed

Mol Microbiol. 2003 May;48(4):1043-57 PubMed

Gene. 1988 Oct 15;70(1):191-7 PubMed

Can J Microbiol. 1996 May;42(5):467-78 PubMed

Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52 PubMed

J Bacteriol. 2017 Jun 13;199(13): PubMed

Cell. 1988 Jul 29;54(3):345-51 PubMed

J Bacteriol. 1996 Aug;178(16):5017-9 PubMed

Mol Gen Mikrobiol Virusol. 1998;(4):33-7 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...