Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase

. 2017 Aug 18 ; 7 (1) : 8817. [epub] 20170818

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28821763

Grantová podpora
R01 GM117373 NIGMS NIH HHS - United States

Odkazy

PubMed 28821763
PubMed Central PMC5562914
DOI 10.1038/s41598-017-09022-6
PII: 10.1038/s41598-017-09022-6
Knihovny.cz E-zdroje

Contact-dependent growth inhibition (CDI) is a wide-spread mechanism of inter-bacterial competition. CDI+ bacteria deliver CdiA-CT toxins into neighboring bacteria and produce specific immunity proteins that protect against self-intoxication. The CdiA-CT toxin from uropathogenic Escherichia coli 536 is a latent tRNase that is only active when bound to the cysteine biosynthetic enzyme CysK. Remarkably, the CysK:CdiA-CT binding interaction mimics the 'cysteine synthase' complex of CysK:CysE. The C-terminal tails of CysE and CdiA-CT each insert into the CysK active-site cleft to anchor the respective complexes. The dissociation constant for CysK:CdiA-CT (K d ~ 11 nM) is comparable to that of the E. coli cysteine synthase complex (K d ~ 6 nM), and both complexes bind through a two-step mechanism with a slow isomerization phase after the initial encounter. However, the second-order rate constant for CysK:CdiA-CT binding is two orders of magnitude slower than that of the cysteine synthase complex, suggesting that CysE should outcompete the toxin for CysK occupancy. However, we find that CdiA-CT can effectively displace CysE from pre-formed cysteine synthase complexes, enabling toxin activation even in the presence of excess competing CysE. This adventitious binding, coupled with the very slow rate of CysK:CdiA-CT dissociation, ensures robust nuclease activity in target bacteria.

Zobrazit více v PubMed

Waksman S. The role of antibiotics in nature. Perspect Biol Med. 1961;4:271–286. doi: 10.1353/pbm.1961.0001. DOI

Cascales E, et al. Colicin biology. Microbiol Mol Biol Rev. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC

Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low-molecular-weight post-translationally modified microcins. Mol Microbiol. 2007;65:1380–94. doi: 10.1111/j.1365-2958.2007.05874.x. PubMed DOI

Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014;80:6854–62. doi: 10.1128/AEM.02284-14. PubMed DOI PMC

Aoki SK, et al. Contact-dependent inhibition of growth in Escherichia coli. Science. 2005;309:1245–8. doi: 10.1126/science.1115109. PubMed DOI

Hood RD, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37. doi: 10.1016/j.chom.2009.12.007. PubMed DOI PMC

MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA. 2010;107:19520–4. doi: 10.1073/pnas.1012931107. PubMed DOI PMC

Souza DP, et al. Bacterial killing via a type IV secretion system. Nat Commun. 2015;6 doi: 10.1038/ncomms7453. PubMed DOI

Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol. 2013;21:230–7. doi: 10.1016/j.tim.2013.02.003. PubMed DOI PMC

Willett JL, Ruhe ZC, Goulding CW, Low DA, Hayes CS. Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol. 2015;427:3754–65. doi: 10.1016/j.jmb.2015.09.010. PubMed DOI PMC

Aoki SK, et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 2010;468:439–42. doi: 10.1038/nature09490. PubMed DOI PMC

Morse RP, et al. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci USA. 2012;109:21480–21485. doi: 10.1073/pnas.1216238110. PubMed DOI PMC

Nikolakakis K, et al. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol. 2012;84:516–29. doi: 10.1111/j.1365-2958.2012.08039.x. PubMed DOI PMC

Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 2012;7 doi: 10.1186/1745-6150-7-18. PubMed DOI PMC

Zhang D, Iyer LM, Aravind L. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res. 2011;39:4532–52. doi: 10.1093/nar/gkr036. PubMed DOI PMC

Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI) Genes Dev. 2012;26:515–25. doi: 10.1101/gad.182345.111. PubMed DOI PMC

Kredich, N. M. Biosynthesis of cysteine. In Escherichia coli and Salmonella (ed. Neidhardt, F.C.) 514–527 (ASM Press, Washington, 1996).

Sekowska A, Kung HF, Danchin A. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol. 2000;2:145–77. PubMed

Schelle MW, Bertozzi CR. Sulfate metabolism in mycobacteria. ChemBioChem. 2006;7:1516–24. doi: 10.1002/cbic.200600224. PubMed DOI

Cook PF, Wedding RT. A reaction mechanism from steady state kinetic studies for O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2. J Biol Chem. 1976;251:2023–9. PubMed

Cook PF, Wedding RT. Initial kinetic characterization of the multienzyme complex, cysteine synthetase. Arch Biochem Biophys. 1977;178:293–302. doi: 10.1016/0003-9861(77)90194-1. PubMed DOI

Cook PF, Wedding RT. Overall mechanism and rate equation for O-acetylserine sulfhydrylase. J Biol Chem. 1977;252 PubMed

Tai CH, Nalabolu SR, Jacobson TM, Minter DE, Cook PF. Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry. 1993;32:6433–42. doi: 10.1021/bi00076a017. PubMed DOI

Schnackerz KD, et al. Identification and spectral characterization of the external aldimine of the O-acetylserine sulfhydrylase reaction. Biochemistry. 1995;34:12152–60. doi: 10.1021/bi00038a008. PubMed DOI

Woehl EU, Tai CH, Dunn MF, Cook PF. Formation of the alpha-aminoacrylate immediate limits the overall reaction catalyzed by O-acetylserine sulfhydrylase. Biochemistry. 1996;35:4776–83. doi: 10.1021/bi952938o. PubMed DOI

Tai CH, Cook PF. O-acetylserine sulfhydrylase. Adv Enzymol Relat Areas Mol Biol. 2000;74:185–234. PubMed

Tai CH, et al. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase. Biochemistry. 2001;40:7446–52. doi: 10.1021/bi015511s. PubMed DOI

Mozzarelli A, et al. The multifaceted pyridoxal 5′-phosphate-dependent O-acetylserine sulfhydrylase. Biochim Biophys Acta. 2011;1814:1497–510. doi: 10.1016/j.bbapap.2011.04.011. PubMed DOI

Burkhard P, et al. Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol. 1998;283:121–33. doi: 10.1006/jmbi.1998.2037. PubMed DOI

Mozzarelli A, Bettati S, Pucci AM, Burkhard P, Cook PF. Catalytic competence of O-acetylserine sulfhydrylase in the crystal probed by polarized absorption microspectrophotometry. J Mol Biol. 1998;283:135–46. doi: 10.1006/jmbi.1998.2038. PubMed DOI

Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN. Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol. 1999;291:941–953. doi: 10.1006/jmbi.1999.3002. PubMed DOI

Burkhard P, Tai CH, Jansonius JN, Cook PF. Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: Structure of the enzyme with chloride bound. J Mol Biol. 2000;303:279–286. doi: 10.1006/jmbi.2000.4109. PubMed DOI

Guan R, Roderick SL, Huang B, Cook PF. Roles of histidines 154 and 189 and aspartate 139 in the active site of serine acetyltransferase from Haemophilus influenzae. Biochemistry. 2008;47:6322–8. doi: 10.1021/bi800075c. PubMed DOI PMC

Kredich NM, Becker MA, Tomkins GM. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem. 1969;244:2428–39. PubMed

Droux M, Ruffet ML, Douce R, Job D. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem. 1998;255:235–45. doi: 10.1046/j.1432-1327.1998.2550235.x. PubMed DOI

Huang B, Vetting MW, Roderick SL. The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol. 2005;187:3201–5. doi: 10.1128/JB.187.9.3201-3205.2005. PubMed DOI PMC

Mino K, et al. Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics. Biosci Biotechnol Biochem. 2000;64:1628–40. doi: 10.1271/bbb.64.1628. PubMed DOI

Campanini B, et al. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci. 2005;14:2115–24. doi: 10.1110/ps.051492805. PubMed DOI PMC

Mino K, et al. Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotechnol Biochem. 2000;64:1874–80. doi: 10.1271/bbb.64.1874. PubMed DOI

Zhao C, et al. On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli. Biochem Biophys Res Commun. 2006;341:911–6. doi: 10.1016/j.bbrc.2006.01.054. PubMed DOI

Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R. Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem. 2002;277:30629–34. doi: 10.1074/jbc.M111632200. PubMed DOI

Johnson PM, et al. Unraveling the essential role of CysK in CDI toxin activation. Proc Natl Acad Sci USA. 2016;113:9792–7. doi: 10.1073/pnas.1607112113. PubMed DOI PMC

Campanini, B. et al. Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. Biochimica et Biophysica Acta1854, 1184–93 (2015). PubMed PMC

Ma DK, Vozdek R, Bhatla N, Horvitz HR. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron. 2012;73:925–40. doi: 10.1016/j.neuron.2011.12.037. PubMed DOI PMC

Beck CM, et al. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. PLoS Pathog. 2016;12 doi: 10.1371/journal.ppat.1005925. PubMed DOI PMC

Ruhe, Z. C., Wallace, A. B., Low, D. A. & Hayes, C. S. Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. MBio4, e00480–13 (2013). PubMed PMC

Poole SJ, et al. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002217. PubMed DOI PMC

Ruhe ZC, et al. CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism. PLoS Genet. 2016;12 doi: 10.1371/journal.pgen.1006145. PubMed DOI PMC

Amori L, et al. Design and synthesis of trans-2-substituted-cyclopropane-1-carboxylic acids as the first non-natural small molecule inhibitors of O-acetylserine sulfhydrylase. MedChemComm. 2012;3:1111–1116. doi: 10.1039/c2md20100c. DOI

Salsi E, et al. Design of O-acetylserine sulfhydrylase inhibitors by mimicking nature. J Med Chem. 2010;53:345–56. doi: 10.1021/jm901325e. PubMed DOI PMC

Spyrakis F, et al. Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. Biochim Biophys Acta Proteins Proteom. 2013;1834:169–81. doi: 10.1016/j.bbapap.2012.09.009. PubMed DOI

Spyrakis F, et al. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One. 2013;8 doi: 10.1371/journal.pone.0077558. PubMed DOI PMC

Pieroni M, et al. Rational Design, Synthesis, and Preliminary Structure-Activity Relationships of alpha-Substituted-2-Phenylcyclopropane Carboxylic Acids as Inhibitors of Salmonella typhimurium O-Acetylserine Sulfhydrylase. J Med Chem. 2016;59:2567–78. doi: 10.1021/acs.jmedchem.5b01775. PubMed DOI

Annunziato G, et al. Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation of O-acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference (STD) NMR. J Enzyme Inhib Med Chem. 2016;31:78–87. doi: 10.1080/14756366.2016.1218486. PubMed DOI

Benoni R, et al. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett. 2017;591:1212–1224. doi: 10.1002/1873-3468.12630. PubMed DOI PMC

Salsi E, et al. A two-step process controls the formation of the bienzyme cysteine synthase complex. J Biol Chem. 2010;285:12813–22. doi: 10.1074/jbc.M109.075762. PubMed DOI PMC

Kaundal S, Uttam M, Thakur KG. Dual Role of a Biosynthetic Enzyme, CysK, in Contact Dependent Growth Inhibition in Bacteria. PLoS One. 2016;11 doi: 10.1371/journal.pone.0159844. PubMed DOI PMC

Wang T, Leyh TS. Three-stage assembly of the cysteine synthase complex from Escherichia coli. J Biol Chem. 2012;287:4360–7. doi: 10.1074/jbc.M111.288423. PubMed DOI PMC

Bernasconi CF. Relaxation Kinetics. New York: Academic Press Inc.; 1976.

Beck CM, Diner EJ, Kim JJ, Low DA, Hayes CS. The F pilus mediates a novel pathway of CDI toxin import. Mol Microbiol. 2014;93:276–90. doi: 10.1111/mmi.12658. PubMed DOI PMC

Ruhe ZC, Nguyen JY, Beck CM, Low DA, Hayes CS. The proton-motive force is required for translocation of CDI toxins across the inner membrane of target bacteria. Mol Microbiol. 2014;94:466–81. doi: 10.1111/mmi.12779. PubMed DOI PMC

Dong H, Nilsson L, Kurland CG. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol. 1996;260:649–63. doi: 10.1006/jmbi.1996.0428. PubMed DOI

Copeland RA. Evaluation of Enzyme Inhibitors in Drug Discovery - A guide for medicinal chemists and pharmacologists. Hoboken: John Wiley and Sons; 2013. PubMed

Copeland RA. The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov. 2016;15:87–95. doi: 10.1038/nrd.2015.18. PubMed DOI

Webb JS, et al. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057609. PubMed DOI PMC

Becker MA, Kredich NM, Tomkins GM. The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem. 1969;244:2418–27. PubMed

Hulanicka MD, Hallquist SG, Kredich NM, Mojica AT. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol. 1979;140:141–6. PubMed PMC

Hindson VJ. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine. Biochem J. 2003;375:745–52. doi: 10.1042/bj20030429. PubMed DOI PMC

Olsen LR, Huang B, Vetting MW, Roderick SL. Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry. 2004;43:6013–9. doi: 10.1021/bi0358521. PubMed DOI

Kroger C, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013;14:683–95. doi: 10.1016/j.chom.2013.11.010. PubMed DOI

Feldman-Salit A, Wirtz M, Hell R, Wade RC. A mechanistic model of the cysteine synthase complex. J Mol Biol. 2009;386:37–59. doi: 10.1016/j.jmb.2008.08.075. PubMed DOI

Beck CM, et al. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure. 2014;22:707–18. doi: 10.1016/j.str.2014.02.012. PubMed DOI PMC

Johnson PM, et al. Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei. J Biol Chem. 2016;291:19387–400. doi: 10.1074/jbc.M116.736074. PubMed DOI PMC

Morse RP, et al. Diversification of beta-Augmentation Interactions between CDI Toxin/Immunity Proteins. J Mol Biol. 2015;427:3766–84. doi: 10.1016/j.jmb.2015.09.020. PubMed DOI PMC

Penfold CN, et al. Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells. J Bacteriol. 2004;186:4520–7. doi: 10.1128/JB.186.14.4520-4527.2004. PubMed DOI PMC

Vankemmelbeke M, Housden NG, James R, Kleanthous C, Penfold CN. Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement. Microbiologyopen. 2013;2:853–61. PubMed PMC

Jones AM, Garza-Sanchez F, So J, Hayes CS, Low DA. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc Natl Acad Sci USA. 2017;114:E1951–E1957. doi: 10.1073/pnas.1619273114. PubMed DOI PMC

Baba T, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2 doi: 10.1038/msb4100050. PubMed DOI PMC

Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995;158:9–14. doi: 10.1016/0378-1119(95)00193-A. PubMed DOI

Koskiniemi S, et al. Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium. PLoS Genet. 2014;10 doi: 10.1371/journal.pgen.1004255. PubMed DOI PMC

Garza-Sanchez F, Janssen BD, Hayes CS. Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J Biol Chem. 2006;281:34258–68. doi: 10.1074/jbc.M608052200. PubMed DOI PMC

Hayes CS, Sauer RT. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol Cell. 2003;12:903–11. doi: 10.1016/S1097-2765(03)00385-X. PubMed DOI

Garza-Sanchez F, Gin JG, Hayes CS. Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. J Mol Biol. 2008;378:505–19. doi: 10.1016/j.jmb.2008.02.065. PubMed DOI PMC

Willett JL, Gucinski GC, Fatherree JP, Low DA, Hayes CS. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc Natl Acad Sci USA. 2015;112:11341–6. doi: 10.1073/pnas.1512124112. PubMed DOI PMC

Tian H, et al. Identification of the structural determinants for the stability of substrate and aminoacrylate external Schiff bases in O-acetylserine sulfhydrylase-A. Biochemistry. 2010;49:6093–103. doi: 10.1021/bi100473v. PubMed DOI

Peterson EA, Sober HA. Preparation of crystalline phosphorylated derivatives of vitamin B6. J Am Chem Soc. 1954;76:169–75. doi: 10.1021/ja01630a045. DOI

Baecker PA, Wedding RT. Purification of serine acetyltransferase, a component of a multienzyme complex, by immunoadsorption and selective dissociation of the complex. Anal Biochem. 1980;102:16–21. doi: 10.1016/0003-2697(80)90310-3. PubMed DOI

Hindson VJ, Moody PC, Rowe AJ, Shaw WV. Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem. 2000;275:461–6. doi: 10.1074/jbc.275.1.461. PubMed DOI

Hindson VJ, Shaw WV. Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli. Biochemistry. 2003;42:3113–9. doi: 10.1021/bi0267893. PubMed DOI

Eyer P, et al. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem. 2003;312:224–7. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI

Hama H, Kayahara T, Ogawa W, Tsuda M, Tsuchiya T. Enhancement of serine-sensitivity by a gene encoding rhodanese-like protein in Escherichia coli. J Biochem. 1994;115:1135–40. doi: 10.1093/oxfordjournals.jbchem.a124469. PubMed DOI

Gaitonde MK. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967;104:627–33. doi: 10.1042/bj1040627. PubMed DOI PMC

Bevans CG, et al. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochim Biophys Acta Gen Subjects. 2013;1830:4202–10. doi: 10.1016/j.bbagen.2013.04.018. PubMed DOI

Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI

Janssen BD, Hayes CS. Kinetics of paused ribosome recycling in Escherichia coli. J Mol Biol. 2009;394:251–67. doi: 10.1016/j.jmb.2009.09.020. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...