Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28827565
PubMed Central
PMC5566216
DOI
10.1038/s41598-017-08814-0
PII: 10.1038/s41598-017-08814-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped.
Institute for Surface and Thin Film Analysis GmbH Kaiserslautern Germany
Zobrazit více v PubMed
Fujii M, Hayashi S, Yamamoto K. Photoluminescence from B-doped Si nanocrystals. J. Appl. Phys. 1998;83:7953–7957. doi: 10.1063/1.367976. DOI
Mimura A, Fujii M, Hayashi S, Yamamoto K. Quenching of photoluminescence from Si nanocrystals caused by boron doping. Sol. State. Commun. 1999;109:561–565. doi: 10.1016/S0038-1098(98)00632-2. DOI
Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U. Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl. Phys. Lett. 2008;92 doi: 10.1063/1.2897291. DOI
Hao XJ, et al. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix. Nanotechnology. 2008;19 doi: 10.1088/0957-4484/19/42/424019. PubMed DOI
Salivati N, Shuall N, McCrate JM, Ekerdt JG. Effect of subsurface boron on photoluminescence from silicon nanocrystals. Surf. Sci. 2011;605:799–801. doi: 10.1016/j.susc.2011.01.022. DOI
Puthen-Veettil B, et al. Passivation effects in B doped self-assembled Si nanocrystals. Appl. Phys. Lett. 2014;105 doi: 10.1063/1.4903776. DOI
Zhang T, et al. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure. J. Appl. Phys. 2015;118 doi: 10.1063/1.4933288. DOI
Zatryb G, et al. Quantitative evaluation of boron-induced disorder in multilayers containing silicon nanocrystals in an oxide matrix designed for photovoltaic applications. Opt. Express. 2010;18:22004–22009. doi: 10.1364/OE.18.022004. PubMed DOI
Pi X, Chen X, Yang D. First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron. J. Phys. Chem. C. 2011;115:9838–9843. doi: 10.1021/jp111548b. DOI
Borisenko VE, Yudin SG. Steady-State Solubility of Substitutional Impurities in Silicon. Phys. Status Solidi A. 1987;101:123–127. doi: 10.1002/pssa.2211010113. DOI
Narducci D, et al. Enhancement of the power factor in two-phase silicon–boron nanocrystalline alloys. Phys. Status Solidi A. 2014;211:1255–1258. doi: 10.1002/pssa.201300130. DOI
Kramer NJ, Schramke KS, Kortshagen UR. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. Nano Lett. 2015;15:5597–5603. doi: 10.1021/acs.nanolett.5b02287. PubMed DOI
Ni Z, et al. Size-Dependent Structures and Optical Absorption of Boron-Hyperdoped Silicon Nanocrystals. Adv. Optical Mater. 2016;4:700–707. doi: 10.1002/adom.201500706. DOI
Zhou S, et al. Ligand-Free, Colloidal, and Plasmonic Silicon Nanocrystals Heavily Doped with Boron. ACS Photonics. 2016;3:415–422. doi: 10.1021/acsphotonics.5b00568. DOI
Bustarret E, et al. Superconductivity in doped cubic silicon. Nature. 2006;444:465–468. doi: 10.1038/nature05340. PubMed DOI
Xie M, et al. The location and doping effect of boron in Si nanocrystals embedded silicon oxide film. Appl. Phys. Lett. 2013;102 doi: 10.1063/1.4798834. DOI
Puthen-Veettil B, et al. Characterisation of active dopants in boron-doped self-assembled silicon nanostructures. Appl. Phys. Lett. 2016;109 doi: 10.1063/1.4964742. DOI
Huang J, et al. Effects of RTA temperatures on conductivity and micro-structures of boron-doped silicon nanocrystals in Si-rich oxide thin films. Mat. Sci. Semicon. Proc. 2016;47:7–11. doi: 10.1016/j.mssp.2016.01.005. DOI
Balberg I. Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J. Appl. Phys. 2011;110 doi: 10.1063/1.3637636. DOI
Laube J, et al. Two-dimensional percolation threshold in confined Si nanoparticle networks. Appl. Phys. Lett. 2016;108 doi: 10.1063/1.4940971. DOI
Zhang T, et al. Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix. Appl. Phys. Lett. 2016;108 doi: 10.1063/1.4942466. DOI
Nomoto K, et al. Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide. MRS Commun. 2016;6:283–288. doi: 10.1557/mrc.2016.37. DOI
Gnaser H. Improved quantification in secondary‐ion mass spectrometry detecting MCs+ molecular ions. J. Vac. Sci. Technol. A. 1994;12:452–456. doi: 10.1116/1.579262. DOI
Hellman OC, Vandenbroucke JA, Rusing J, Isheim D, Seidman DN. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 2000;6:437–444. PubMed
Nomoto K, et al. Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals. J. Phys. Chem. C. 2016;120:17845–17852. doi: 10.1021/acs.jpcc.6b06197. DOI
Nomoto K, et al. Atom probe tomography of size-controlled phosphorus doped silicon nanocrystals. Phys. Status Solidi RRL. 2017;11 doi: 10.1002/pssr.201600376. DOI
Grove AS, Leistiko O, Jr., Sah CT. Redistribution of Acceptor and Donor Impurities during Thermal Oxidation of Silicon. J. Appl. Phys. 1964;35:2695–2701. doi: 10.1063/1.1713825. DOI
Dalpian GM, Chelikowsky JR. Self-Purification in Semiconductor Nanocrystals. Phys. Rev. Lett. 2006;96 doi: 10.1103/PhysRevLett.96.226802. PubMed DOI
Queeney KT, et al. Infrared spectroscopic analysis of the Si/SiO2 interface structure of thermally oxidized silicon. J. Appl. Phys. 2000;87:1322–1330. doi: 10.1063/1.372017. DOI
Zimina A, Eisebitt S, Eberhardt W, Heitmann J, Zacharias M. Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix. Appl. Phys. Lett. 2006;88 doi: 10.1063/1.2193810. DOI
Carvalho A, Rayson MJ, Briddon PR. Effect of Oxidation on the Doping of Silicon Nanocrystals with Group III and Group V Elements. J. Phys. Chem. C. 2012;116:8243–8250. doi: 10.1021/jp300712v. DOI
Guerra R, Ossicini S. Preferential Positioning of Dopants and Co-Dopants in Embedded and Freestanding Si Nanocrystals. J. Am. Chem. Soc. 2014;136:4404–4409. doi: 10.1021/ja5002357. PubMed DOI
Vurpillot F, Bostel A, Blavette D. Trajectory overlaps and local magnification in three-dimensional atom probe. Appl. Phys. Lett. 2000;76:3127–3129. doi: 10.1063/1.126545. DOI
Oberdorfer C, Schmitz G. On the field evaporation behavior of dielectric materials in three-dimensional atom probe: a numeric simulation. Microsc. Microanal. 2011;17:15–25. doi: 10.1017/S1431927610093888. PubMed DOI
Hiller D, et al. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-01001-1. PubMed DOI PMC
Hiller, D. et al. Phosphorus-Doping of Silicon Nanocrystals Embedded in Silicon Oxynitride and Silicon Oxide Matrix. Phys. Status Solidi A, under review (2017).
Holleman, A. F. & Wiberg, N. Inorganic Chemistry, 101st Ed., (Academic Press, 2001).
Diarra M, Niquet YM, Delerue C, Allan G. Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B. 2007;75 doi: 10.1103/PhysRevB.75.045301. DOI
Arduca E, Perego M. Doping of silicon nanocrystals. Mater. Sci. Semicond. Process. 2017;62:156–170. doi: 10.1016/j.mssp.2016.10.054. DOI
Cheylan S, Elliman RG. Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix. Appl. Phys. Lett. 2001;78:1225–1227. doi: 10.1063/1.1338492. DOI
Hiller D, Jivanescu M, Stesmans A, Zacharias M. Pb(0) centers at the Si-nanocrystal/SiO2 interface as the dominant photoluminescence quenching defect. J. Appl. Phys. 2010;107 doi: 10.1063/1.3388176. DOI
Jivanescu M, Hiller D, Zacharias M, Stesmans A. Size dependence of Pb-type photoluminescence quenching defects at the Si nanocrystal interface. Euro Phys. Lett. 2011;96 doi: 10.1209/0295-5075/96/27003. DOI
Valenta J. Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology. Nanoscience Methods. 2014;3:11–27. doi: 10.1080/21642311.2014.884288. DOI
Limpens R, Luxembourg SL, Weeber AW, Gregorkiewicz T. Emission efficiency limit of Si nanocrystals. Sci. Rep. 2016;6 doi: 10.1038/srep19566. PubMed DOI PMC
Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. J. Lumin. 2006;121:327–334. doi: 10.1016/j.jlumin.2006.08.068. DOI
Gutsch S, et al. Electronic properties of phosphorus doped silicon nanocrystals embedded in SiO2. Appl. Phys. Lett. 2015;106 doi: 10.1063/1.4915307. DOI
Gutsch S, et al. Charge transport in Si nanocrystal/SiO2 superlattices. J. Appl. Phys. 2013;113 doi: 10.1063/1.4798395. DOI
Gutsch, S. Electronic Transport in Ordered Silicon Nanocrystal Networks, PhD thesis, p. 87 (University of Freiburg, 2014).
Lechner R, et al. Electronic properties of doped silicon nanocrystal films. J. Appl. Phys. 2008;104 doi: 10.1063/1.2973399. DOI
Cantele G, et al. First-principles study of n- and p-doped silicon nanoclusters. Phys. Rev. B. 2005;72 doi: 10.1103/PhysRevB.72.113303. DOI
König D, et al. Location and Electronic Nature of Phosphorus in the Si Nanocrystal–SiO2 System. Sci. Rep. 2015;5 doi: 10.1038/srep09702. PubMed DOI PMC
König D, Hiller D, Gutsch S, Zacharias M, Smith S. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide. Sci. Rep. 2017;7 doi: 10.1038/srep46703. PubMed DOI PMC
Laube J, et al. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2014;116 doi: 10.1063/1.4904053. DOI
Frisch, M. J. et al. Gaussian03, Revision D.02, Gaussian Inc., Wallingford, CT (2004).
Frisch, M. J. et al. Gaussian09, Revision D.01, Gaussian Inc., Wallingford, CT (2010).
Becke D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Francl MM, et al. Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI
König D, Rudd J, Green MA, Conibeer G. Role of the Interface for the Electronic Structure of Silicon Quantum Dots. Phys. Rev. B. 2008;78 doi: 10.1103/PhysRevB.78.035339. DOI
König D, Hiller D, Gutsch S, Zacharias M. Energy Offset Between Silicon Quantum Structures: Interface Impact of Embedding Dielectrics as Doping Alternative. Adv. Mater. Interfaces. 2014;1 doi: 10.1002/admi.201400359. DOI
König D, Rudd J, Green MA, Conibeer G. Impact of interface on the effective band gap of Si quantum dots. Sol. Energy Mater. Sol. Cells. 2009;93:753–758. doi: 10.1016/j.solmat.2008.09.026. DOI