Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29977683
PubMed Central
PMC6009393
DOI
10.3762/bjnano.9.141
Knihovny.cz E-zdroje
- Klíčová slova
- atom probe tomography, doping, photoluminescence, silicon nanocrystals, transient transmission,
- Publikační typ
- časopisecké články MeSH
Phosphorus- and boron-doped silicon nanocrystals (Si NCs) embedded in silicon oxide matrix can be fabricated by plasma-enhanced chemical vapour deposition (PECVD). Conventionally, SiH4 and N2O are used as precursor gasses, which inevitably leads to the incorporation of ≈10 atom % nitrogen, rendering the matrix a silicon oxynitride. Alternatively, SiH4 and O2 can be used, which allows for completely N-free silicon oxide. In this work, we investigate the properties of B- and P-incorporating Si NCs embedded in pure silicon oxide compared to silicon oxynitride by atom probe tomography (APT), low-temperature photoluminescence (PL), transient transmission (TT), and current-voltage (I-V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes.
Department of Chemical Physics and Optics Charles University Prague Czech Republic
Institute for Surface and Thin Film Analysis GmbH Kaiserslautern Germany
Integrated Materials Design Centre Sydney Australia
Laboratory for Nanotechnology Department of Microsystems Engineering University of Freiburg Germany
Research School of Engineering Australian National University Canberra Australia
Zobrazit více v PubMed
König D. The Introduction of Majority Carriers into Group IV Nanocrystals. In: Valenta J, Mirabella S, editors. Nanotechnology and Photovoltaic Devices. Singapore: Pan Stanford; 2015. pp. 203–254.
Diarra M, Niquet Y-M, Delerue C, Allan G. Phys Rev B. 2007;75:045301. doi: 10.1103/PhysRevB.75.045301. DOI
Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G, Ossicini S. Phys Rev B. 2005;72:113303. doi: 10.1103/PhysRevB.72.113303. DOI
König D. AIP Adv. 2016;6:085306. doi: 10.1063/1.4960994. DOI
Perez-Wurfl I, Ma L, Lin D, Hao X, Green M A, Conibeer G. Sol Energy Mater Sol Cells. 2012;100:65–68. doi: 10.1016/j.solmat.2011.02.029. DOI
Wu L, Puthen-Veettil B, Nomoto K, Hao X, Jia X, Lin Z, Yang T C, Zhang T, Gutsch S, Conibeer G, et al. J Appl Phys. 2016;119:063102. doi: 10.1063/1.4941695. DOI
Mimura A, Fujii M, Hayashi S, Kovalev D, Koch F. Phys Rev B. 2000;62:12625. doi: 10.1103/PhysRevB.62.12625. DOI
Mangolini L, Thimsen E, Kortshagen U. Nano Lett. 2005;5:655–659. doi: 10.1021/nl050066y. PubMed DOI
Hessel C M, Henderson E J, Veinot J G C. Chem Mater. 2006;18:6139–6146. doi: 10.1021/cm0602803. DOI
Perego M, Seguini G, Arduca E, Frascaroli J, De Salvador D, Mastromatteo M, Carnera A, Nicotra G, Scuderi M, Spinella C, et al. Nanoscale. 2015;7:14469–14475. doi: 10.1039/C5NR02584B. PubMed DOI
Arduca E, Perego M. Mater Sci Semicond Process. 2017;62:156–170. doi: 10.1016/j.mssp.2016.10.054. DOI
Rowe D J, Jeong J S, Mkhoyan K A, Kortshagen U R. Nano Lett. 2013;13:1317–1322. doi: 10.1021/nl4001184. PubMed DOI
Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T. ACS Nano. 2015;9:378–386. doi: 10.1021/nn505416r. PubMed DOI
Kramer N J, Schramke K S, Kortshagen U R. Nano Lett. 2015;15:5597–5603. doi: 10.1021/acs.nanolett.5b02287. PubMed DOI
Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D. Adv Opt Mater. 2016;4:700–707. doi: 10.1002/adom.201500706. DOI
Hartel A M, Hiller D, Gutsch S, Löper P, Estradé S, Peiró F, Garrido B, Zacharias M. Thin Solid Films. 2011;520:121–125. doi: 10.1016/j.tsf.2011.06.084. DOI
Laube J, Gutsch S, Hiller D, Bruns M, Kübel C, Weiss C, Zacharias M. J Appl Phys. 2014;116:223501. doi: 10.1063/1.4904053. DOI
Jivanescu M, Hiller D, Zacharias M, Stesmans A. EPL. 2011;96:27003. doi: 10.1209/0295-5075/96/27003. DOI
Gnaser H. J Vac Sci Technol, A. 1994;12:452–456. doi: 10.1116/1.579262. DOI
Khelifi R, Mathiot D, Gupta R, Muller D, Roussel M, Duguay S. Appl Phys Lett. 2013;102:013116. doi: 10.1063/1.4774266. DOI
Talbot E, Lardé R, Pareige P, Khomenkova L, Hijazi K, Gourbilleau F. Nanoscale Res Lett. 2013;8:39. doi: 10.1186/1556-276X-8-39. PubMed DOI PMC
Hellman O C, Vandenbroucke J A, Rüsing J, Isheim D, Seidman D N. Microsc Microanal. 2000;6:437–444. PubMed
Gnaser H, Gutsch S, Wahl M, Schiller R, Kopnarski M, Hiller D, Zacharias M. J Appl Phys. 2014;115:034304. doi: 10.1063/1.4862174. DOI
Nomoto K, Hiller D, Gutsch S, Ceguerra A V, Breen A, Zacharias M, Conibeer G, Perez-Wurfl I, Ringer S P. Phys Status Solidi RRL. 2017;11:1600376. doi: 10.1002/pssr.201600376. DOI
Nomoto K, Gutsch S, Ceguerra A V, Breen A, Sugimoto H, Fujii M, Perez-Wurfl I, Ringer S P, Conibeer G. MRS Commun. 2016;6:283–288. doi: 10.1557/mrc.2016.37. DOI
Nomoto K, Sugimoto H, Breen A, Ceguerra A V, Kanno T, Ringer S P, Perez Wurfl I, Conibeer G, Fujii M. J Phys Chem C. 2016;120:17845–17852. doi: 10.1021/acs.jpcc.6b06197. DOI
Vurpillot F, Bostel A, Blavette D. Appl Phys Lett. 2000;76:3127–3129. doi: 10.1063/1.126545. DOI
Talbot E, Lardé R, Gourbilleau F, Dufour C, Pareige P. EPL. 2009;87:26004. doi: 10.1209/0295-5075/87/26004. DOI
Hiller D, López-Vidrier J, Gutsch S, Zacharias M, Nomoto K, König D. Sci Rep. 2017;7:863. doi: 10.1038/s41598-017-01001-1. PubMed DOI PMC
Hiller D, López-Vidrier J, Gutsch S, Zacharias M, Wahl M, Bock W, Brodyanski A, Kopnarski M, Nomoto K, Valenta J, et al. Sci Rep. 2017;7:8337. doi: 10.1038/s41598-017-08814-0. PubMed DOI PMC
Melkonyan D, Fleischmann C, Arnoldi L, Demeulemeester J, Kumar A, Bogdanowicz J, Vurpillot F, Vandervorst W. Ultramicroscopy. 2017;179:100–107. doi: 10.1016/j.ultramic.2017.04.006. PubMed DOI
Zanuttini D, Blum I, Rigutti L, Vurpillot F, Douady J, Jacquet E, Anglade P-M, Gervais B. J Chem Phys. 2017;147:164301. doi: 10.1063/1.5001113. PubMed DOI
Gault B, Saxey D W, Ashton M W, Sinnott S B, Chiaramonti A N, Moody M P, Schreiber D K. New J Phys. 2016;18:033031. doi: 10.1088/1367-2630/18/3/033031. DOI
Carvalho A, Rayson M J, Briddon P R. J Phys Chem C. 2012;116:8243–8250. doi: 10.1021/jp300712v. DOI
Guerra R, Ossicini S. J Am Chem Soc. 2014;136:4404–4409. doi: 10.1021/ja5002357. PubMed DOI
Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2014;105:243107. doi: 10.1063/1.4904472. DOI
Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. J Appl Phys. 2017;122:144303. doi: 10.1063/1.4999023. DOI
Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. J Lumin. 2006;121:327–334. doi: 10.1016/j.jlumin.2006.08.068. DOI
Kachurin G A, Cherkova S G, Volodin V A, Kesler V G, Gutakovsky A K, Cherkov A G, Bublikov A V, Tetelbaum D I. Nucl Instrum Methods Phys Res, Sect B. 2004;222:497–504. doi: 10.1016/j.nimb.2004.03.076. DOI
Chen X, Pi X, Yang D. J Phys Chem C. 2011;115:661–666. doi: 10.1021/jp1102934. DOI
König D, Gutsch S, Gnaser H, Wahl M, Kopnarski M, Göttlicher J, Steininger R, Zacharias M, Hiller D. Sci Rep. 2015;5:9702. doi: 10.1038/srep09702. PubMed DOI PMC
Crowe I F, Papachristodoulou N, Halsall M P, Hylton N P, Hulko O, Knights A P, Yang P, Gwilliam R M, Shah M, Kenyon A J. J Appl Phys. 2013;113:024304. doi: 10.1063/1.4772947. DOI
Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2012;85:165306. doi: 10.1103/PhysRevB.85.165306. DOI
Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2013;87:035428. doi: 10.1103/PhysRevB.87.035428. DOI
Kozák M, Kořínek M, Trojánek F, Hiller D, Gutsch S, Zacharias M, Malý P. J Appl Phys. 2013;114:173103. doi: 10.1063/1.4829006. DOI
Chlouba T, Trojánek F, Laube J, Hiller D, Gutsch S, Zacharias M, Malý P. Sci Rep. 2018;8:1703. doi: 10.1038/s41598-018-19967-x. PubMed DOI PMC
Fukata N, Chen J, Sekiguchi T, Matsushita S, Oshima T, Uchida N, Murakami K, Tsurui T, Ito S. Appl Phys Lett. 2007;90:153117. doi: 10.1063/1.2721377. DOI
Pankove J I, Wance R O, Berkeyheiser J E. Appl Phys Lett. 1984;45:1100–1102. doi: 10.1063/1.95030. DOI
Johnson N M, Herring C, Chadi D J. Phys Rev Lett. 1986;56:769–772. doi: 10.1103/PhysRevLett.56.769. PubMed DOI
Fukata N, Sasaki S, Fujimura S, Haneda H, Murakami K. Jpn J Appl Phys, Part 1. 1996;35:3937–3941. doi: 10.1143/JJAP.35.3937. DOI
Holleman A F, Wiberg E, Wiberg N. Lehrbuch der Anorganischen Chemie. 101st ed. Berlin, Germany: Walter deGruyter; 1995. DOI
Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B, Zacharias M. Appl Phys Lett. 2015;106:113103. doi: 10.1063/1.4915307. DOI
Puthen-Veettil B, Zhang T, Chin R L, Jia X, Nomoto K, Yang T C-J, Lin Z, Wu L, Rexiati R, Gutsch S, et al. Appl Phys Lett. 2016;109:153106. doi: 10.1063/1.4964742. DOI
Sychugov I, Valenta J, Mitsuishi K, Linnros J. Phys Rev B. 2012;86:075311. doi: 10.1103/PhysRevB.86.075311. DOI
Tanaka T, Kurosawa Y, Kadotani N, Takahashi T, Oda S, Uchida K. Nano Lett. 2016;16:1143–1149. doi: 10.1021/acs.nanolett.5b04406. PubMed DOI
Seguini G, Schamm-Chardon S, Pellegrino P, Perego M. Appl Phys Lett. 2011;99:082107. doi: 10.1063/1.3629813. DOI
Stegner A R, Pereira R N, Lechner R, Klein K, Wiggers H, Stutzmann M, Brandt M S. Phys Rev B. 2009;80:165326. doi: 10.1103/PhysRevB.80.165326. PubMed DOI
Almeida A J, Sugimoto H, Fujii M, Brandt M S, Stutzmann M, Pereira R N. Phys Rev B. 2016;93:115425. doi: 10.1103/PhysRevB.93.115425. DOI
König D, Hiller D, Gutsch S, Zacharias M, Smith S. Sci Rep. 2017;7:46703. doi: 10.1038/srep46703. PubMed DOI PMC
Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber W M. Nano Lett. 2012;12:119–124. doi: 10.1021/nl203094h. PubMed DOI
König D, Hiller D, Gutsch S, Zacharias M. Adv Mater Interfaces. 2014;1:1400359. doi: 10.1002/admi.201400359. DOI