Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

. 2018 ; 9 () : 1501-1511. [epub] 20180518

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29977683

Phosphorus- and boron-doped silicon nanocrystals (Si NCs) embedded in silicon oxide matrix can be fabricated by plasma-enhanced chemical vapour deposition (PECVD). Conventionally, SiH4 and N2O are used as precursor gasses, which inevitably leads to the incorporation of ≈10 atom % nitrogen, rendering the matrix a silicon oxynitride. Alternatively, SiH4 and O2 can be used, which allows for completely N-free silicon oxide. In this work, we investigate the properties of B- and P-incorporating Si NCs embedded in pure silicon oxide compared to silicon oxynitride by atom probe tomography (APT), low-temperature photoluminescence (PL), transient transmission (TT), and current-voltage (I-V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes.

Zobrazit více v PubMed

König D. The Introduction of Majority Carriers into Group IV Nanocrystals. In: Valenta J, Mirabella S, editors. Nanotechnology and Photovoltaic Devices. Singapore: Pan Stanford; 2015. pp. 203–254.

Diarra M, Niquet Y-M, Delerue C, Allan G. Phys Rev B. 2007;75:045301. doi: 10.1103/PhysRevB.75.045301. DOI

Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G, Ossicini S. Phys Rev B. 2005;72:113303. doi: 10.1103/PhysRevB.72.113303. DOI

König D. AIP Adv. 2016;6:085306. doi: 10.1063/1.4960994. DOI

Perez-Wurfl I, Ma L, Lin D, Hao X, Green M A, Conibeer G. Sol Energy Mater Sol Cells. 2012;100:65–68. doi: 10.1016/j.solmat.2011.02.029. DOI

Wu L, Puthen-Veettil B, Nomoto K, Hao X, Jia X, Lin Z, Yang T C, Zhang T, Gutsch S, Conibeer G, et al. J Appl Phys. 2016;119:063102. doi: 10.1063/1.4941695. DOI

Mimura A, Fujii M, Hayashi S, Kovalev D, Koch F. Phys Rev B. 2000;62:12625. doi: 10.1103/PhysRevB.62.12625. DOI

Mangolini L, Thimsen E, Kortshagen U. Nano Lett. 2005;5:655–659. doi: 10.1021/nl050066y. PubMed DOI

Hessel C M, Henderson E J, Veinot J G C. Chem Mater. 2006;18:6139–6146. doi: 10.1021/cm0602803. DOI

Perego M, Seguini G, Arduca E, Frascaroli J, De Salvador D, Mastromatteo M, Carnera A, Nicotra G, Scuderi M, Spinella C, et al. Nanoscale. 2015;7:14469–14475. doi: 10.1039/C5NR02584B. PubMed DOI

Arduca E, Perego M. Mater Sci Semicond Process. 2017;62:156–170. doi: 10.1016/j.mssp.2016.10.054. DOI

Rowe D J, Jeong J S, Mkhoyan K A, Kortshagen U R. Nano Lett. 2013;13:1317–1322. doi: 10.1021/nl4001184. PubMed DOI

Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T. ACS Nano. 2015;9:378–386. doi: 10.1021/nn505416r. PubMed DOI

Kramer N J, Schramke K S, Kortshagen U R. Nano Lett. 2015;15:5597–5603. doi: 10.1021/acs.nanolett.5b02287. PubMed DOI

Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B, Yang D. Adv Opt Mater. 2016;4:700–707. doi: 10.1002/adom.201500706. DOI

Hartel A M, Hiller D, Gutsch S, Löper P, Estradé S, Peiró F, Garrido B, Zacharias M. Thin Solid Films. 2011;520:121–125. doi: 10.1016/j.tsf.2011.06.084. DOI

Laube J, Gutsch S, Hiller D, Bruns M, Kübel C, Weiss C, Zacharias M. J Appl Phys. 2014;116:223501. doi: 10.1063/1.4904053. DOI

Jivanescu M, Hiller D, Zacharias M, Stesmans A. EPL. 2011;96:27003. doi: 10.1209/0295-5075/96/27003. DOI

Gnaser H. J Vac Sci Technol, A. 1994;12:452–456. doi: 10.1116/1.579262. DOI

Khelifi R, Mathiot D, Gupta R, Muller D, Roussel M, Duguay S. Appl Phys Lett. 2013;102:013116. doi: 10.1063/1.4774266. DOI

Talbot E, Lardé R, Pareige P, Khomenkova L, Hijazi K, Gourbilleau F. Nanoscale Res Lett. 2013;8:39. doi: 10.1186/1556-276X-8-39. PubMed DOI PMC

Hellman O C, Vandenbroucke J A, Rüsing J, Isheim D, Seidman D N. Microsc Microanal. 2000;6:437–444. PubMed

Gnaser H, Gutsch S, Wahl M, Schiller R, Kopnarski M, Hiller D, Zacharias M. J Appl Phys. 2014;115:034304. doi: 10.1063/1.4862174. DOI

Nomoto K, Hiller D, Gutsch S, Ceguerra A V, Breen A, Zacharias M, Conibeer G, Perez-Wurfl I, Ringer S P. Phys Status Solidi RRL. 2017;11:1600376. doi: 10.1002/pssr.201600376. DOI

Nomoto K, Gutsch S, Ceguerra A V, Breen A, Sugimoto H, Fujii M, Perez-Wurfl I, Ringer S P, Conibeer G. MRS Commun. 2016;6:283–288. doi: 10.1557/mrc.2016.37. DOI

Nomoto K, Sugimoto H, Breen A, Ceguerra A V, Kanno T, Ringer S P, Perez Wurfl I, Conibeer G, Fujii M. J Phys Chem C. 2016;120:17845–17852. doi: 10.1021/acs.jpcc.6b06197. DOI

Vurpillot F, Bostel A, Blavette D. Appl Phys Lett. 2000;76:3127–3129. doi: 10.1063/1.126545. DOI

Talbot E, Lardé R, Gourbilleau F, Dufour C, Pareige P. EPL. 2009;87:26004. doi: 10.1209/0295-5075/87/26004. DOI

Hiller D, López-Vidrier J, Gutsch S, Zacharias M, Nomoto K, König D. Sci Rep. 2017;7:863. doi: 10.1038/s41598-017-01001-1. PubMed DOI PMC

Hiller D, López-Vidrier J, Gutsch S, Zacharias M, Wahl M, Bock W, Brodyanski A, Kopnarski M, Nomoto K, Valenta J, et al. Sci Rep. 2017;7:8337. doi: 10.1038/s41598-017-08814-0. PubMed DOI PMC

Melkonyan D, Fleischmann C, Arnoldi L, Demeulemeester J, Kumar A, Bogdanowicz J, Vurpillot F, Vandervorst W. Ultramicroscopy. 2017;179:100–107. doi: 10.1016/j.ultramic.2017.04.006. PubMed DOI

Zanuttini D, Blum I, Rigutti L, Vurpillot F, Douady J, Jacquet E, Anglade P-M, Gervais B. J Chem Phys. 2017;147:164301. doi: 10.1063/1.5001113. PubMed DOI

Gault B, Saxey D W, Ashton M W, Sinnott S B, Chiaramonti A N, Moody M P, Schreiber D K. New J Phys. 2016;18:033031. doi: 10.1088/1367-2630/18/3/033031. DOI

Carvalho A, Rayson M J, Briddon P R. J Phys Chem C. 2012;116:8243–8250. doi: 10.1021/jp300712v. DOI

Guerra R, Ossicini S. J Am Chem Soc. 2014;136:4404–4409. doi: 10.1021/ja5002357. PubMed DOI

Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2014;105:243107. doi: 10.1063/1.4904472. DOI

Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. J Appl Phys. 2017;122:144303. doi: 10.1063/1.4999023. DOI

Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. J Lumin. 2006;121:327–334. doi: 10.1016/j.jlumin.2006.08.068. DOI

Kachurin G A, Cherkova S G, Volodin V A, Kesler V G, Gutakovsky A K, Cherkov A G, Bublikov A V, Tetelbaum D I. Nucl Instrum Methods Phys Res, Sect B. 2004;222:497–504. doi: 10.1016/j.nimb.2004.03.076. DOI

Chen X, Pi X, Yang D. J Phys Chem C. 2011;115:661–666. doi: 10.1021/jp1102934. DOI

König D, Gutsch S, Gnaser H, Wahl M, Kopnarski M, Göttlicher J, Steininger R, Zacharias M, Hiller D. Sci Rep. 2015;5:9702. doi: 10.1038/srep09702. PubMed DOI PMC

Crowe I F, Papachristodoulou N, Halsall M P, Hylton N P, Hulko O, Knights A P, Yang P, Gwilliam R M, Shah M, Kenyon A J. J Appl Phys. 2013;113:024304. doi: 10.1063/1.4772947. DOI

Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2012;85:165306. doi: 10.1103/PhysRevB.85.165306. DOI

Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2013;87:035428. doi: 10.1103/PhysRevB.87.035428. DOI

Kozák M, Kořínek M, Trojánek F, Hiller D, Gutsch S, Zacharias M, Malý P. J Appl Phys. 2013;114:173103. doi: 10.1063/1.4829006. DOI

Chlouba T, Trojánek F, Laube J, Hiller D, Gutsch S, Zacharias M, Malý P. Sci Rep. 2018;8:1703. doi: 10.1038/s41598-018-19967-x. PubMed DOI PMC

Fukata N, Chen J, Sekiguchi T, Matsushita S, Oshima T, Uchida N, Murakami K, Tsurui T, Ito S. Appl Phys Lett. 2007;90:153117. doi: 10.1063/1.2721377. DOI

Pankove J I, Wance R O, Berkeyheiser J E. Appl Phys Lett. 1984;45:1100–1102. doi: 10.1063/1.95030. DOI

Johnson N M, Herring C, Chadi D J. Phys Rev Lett. 1986;56:769–772. doi: 10.1103/PhysRevLett.56.769. PubMed DOI

Fukata N, Sasaki S, Fujimura S, Haneda H, Murakami K. Jpn J Appl Phys, Part 1. 1996;35:3937–3941. doi: 10.1143/JJAP.35.3937. DOI

Holleman A F, Wiberg E, Wiberg N. Lehrbuch der Anorganischen Chemie. 101st ed. Berlin, Germany: Walter deGruyter; 1995. DOI

Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B, Zacharias M. Appl Phys Lett. 2015;106:113103. doi: 10.1063/1.4915307. DOI

Puthen-Veettil B, Zhang T, Chin R L, Jia X, Nomoto K, Yang T C-J, Lin Z, Wu L, Rexiati R, Gutsch S, et al. Appl Phys Lett. 2016;109:153106. doi: 10.1063/1.4964742. DOI

Sychugov I, Valenta J, Mitsuishi K, Linnros J. Phys Rev B. 2012;86:075311. doi: 10.1103/PhysRevB.86.075311. DOI

Tanaka T, Kurosawa Y, Kadotani N, Takahashi T, Oda S, Uchida K. Nano Lett. 2016;16:1143–1149. doi: 10.1021/acs.nanolett.5b04406. PubMed DOI

Seguini G, Schamm-Chardon S, Pellegrino P, Perego M. Appl Phys Lett. 2011;99:082107. doi: 10.1063/1.3629813. DOI

Stegner A R, Pereira R N, Lechner R, Klein K, Wiggers H, Stutzmann M, Brandt M S. Phys Rev B. 2009;80:165326. doi: 10.1103/PhysRevB.80.165326. PubMed DOI

Almeida A J, Sugimoto H, Fujii M, Brandt M S, Stutzmann M, Pereira R N. Phys Rev B. 2016;93:115425. doi: 10.1103/PhysRevB.93.115425. DOI

König D, Hiller D, Gutsch S, Zacharias M, Smith S. Sci Rep. 2017;7:46703. doi: 10.1038/srep46703. PubMed DOI PMC

Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber W M. Nano Lett. 2012;12:119–124. doi: 10.1021/nl203094h. PubMed DOI

König D, Hiller D, Gutsch S, Zacharias M. Adv Mater Interfaces. 2014;1:1400359. doi: 10.1002/admi.201400359. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...