Interplay of bimolecular and Auger recombination in photoexcited carrier dynamics in silicon nanocrystal/silicon dioxide superlattices

. 2018 Jan 26 ; 8 (1) : 1703. [epub] 20180126

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29374259
Odkazy

PubMed 29374259
PubMed Central PMC5786032
DOI 10.1038/s41598-018-19967-x
PII: 10.1038/s41598-018-19967-x
Knihovny.cz E-zdroje

We report results of investigating carrier recombination in silicon nanocrystal/silicon dioxide superlattices. The superlattices prepared by nitrogen-free plasma enhanced chemical vapour deposition contained layers of silicon nanocrystals. Femtosecond transient transmission optical spectroscopy was used to monitor carrier mechanisms in the samples. The three-particle Auger recombination was observed in accord with previous reports. However, under high pump intensities (high photoexcited carrier densities) the bimolecular process dominated the recombination. Detailed analysis of measured data and fitting procedure made it possible to follow and quantify the interplay between the two recombination processes. The bimolecular recombination was interpreted in terms of the trap-assisted Auger recombination.

Zobrazit více v PubMed

Htoon H, Hollingsworth JA, Dickerson R, Klimov VI. Effect of Zero- to One-Dimensional Transformation on Multiparticle Auger Recombination in Semiconductor Quantum Rods. Phys. Rev. Lett. 2003;91:227401. doi: 10.1103/PhysRevLett.91.227401. PubMed DOI

Klimov VI. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B. 2000;104:6112–6123. doi: 10.1021/jp9944132. DOI

Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science (80-.). 2000;287:1011–1013. doi: 10.1126/science.287.5455.1011. PubMed DOI

Puritis T, Kaupuzs J. Photoluminescence from silicon nanocrystals initiated by Auger recombination. Phys. E Low-dimensional Syst. Nanostructures. 2006;35:16–22.

Trinh MT, Limpens R, Gregorkiewicz T. Experimental Investigations and Modeling of Auger Recombination in Silicon Nanocrystals. J. Phys. Chem. C. 2013;117:5963–5968. doi: 10.1021/jp311124c. DOI

Suna A. Kinematics of Exciton-Exciton Annihilation in Molecular Crystals. Phys. Rev. B. 1970;1:1716–1739. doi: 10.1103/PhysRevB.1.1716. DOI

Valkunas L, Ma Y-Z, Fleming GR. Exciton-exciton annihilation in single-walled carbon nanotubes. Phys. Rev. B. 2006;73:115432. doi: 10.1103/PhysRevB.73.115432. PubMed DOI

Haug A, Schmid W. Recombination mechanism in heavily doped silicon. Solid. State. Electron. 1982;25:665–667. doi: 10.1016/0038-1101(82)90069-7. DOI

Cohn, A. W., Schimpf, A. M., Gunthardt, C. E. & Gamelin, D. R. Size-Dependent Trap-Assisted Auger Recombination in Semiconductor Nanocrystals., 10.1021/nl400503s (2013). PubMed

Mora-Sero I, et al. Recombination in Quantum Dot Sensitized Solar Cells. Acc. Chem. Res. 2009;42:1848–1857. doi: 10.1021/ar900134d. PubMed DOI

Klimov VI. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007;58:635–673. doi: 10.1146/annurev.physchem.58.032806.104537. PubMed DOI

Sun J, et al. Photocarrier recombination dynamics in ternary chalcogenide CuInS 2 quantum dots. Phys. Chem. Chem. Phys. 2015;17:11981–11989. doi: 10.1039/C5CP00034C. PubMed DOI

Kořínek M, et al. Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals. Appl. Surf. Sci. 2016;377:238–243. doi: 10.1016/j.apsusc.2016.03.121. DOI

Othonos A, Lioudakis E, Nassiopoulou AG. Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit auger recombination. Nanoscale Res. Lett. 2008;3:315–320. doi: 10.1007/s11671-008-9159-8. DOI

Laube, J. et al. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 116 (2014).

López-Vidrier, J. et al. Annealing temperature and barrier thickness effect on the structural and optical properties of silicon nanocrystals/SiO2 superlattices. J. Appl. Phys. 116 (2014).

Hiller D, et al. Nitrogen at the Si-nanocrystal/SiO2 interface and its influence on luminescence and interface defects. Phys. Rev. B - Condens. Matter Mater. Phys. 2010;82:1–9. doi: 10.1103/PhysRevB.82.195401. DOI

Laube, J. et al. Two-dimensional percolation threshold in confined Si nanoparticle networks. Appl. Phys. Lett. 108 (2016).

Rohlfing, M., Kriiger, P. & Pollmann, J. Si, SiC. 48 (1993).

Kozák M, et al. Hot-phonon-induced indirect absorption in silicon nanocrystals. J. Appl. Phys. 2013;114:1–6. doi: 10.1063/1.4829006. DOI

Liu H, Pfost D, Tauc J. Photoinduced free-carrier absorption in microcrystalline silicon. Solid State Commun. 1984;50:987–990. doi: 10.1016/0038-1098(84)90271-0. DOI

Kudrna J, et al. Ultrafast carrier dynamics in undoped microcrystalline silicon. Mater. Sci. Eng. B. 2000;69–70:238–242. doi: 10.1016/S0921-5107(99)00302-5. DOI

Kořínek M, et al. Photoexcited charge carrier dynamics in silicon nanocrystal/SiO2 superlattices. Phys. E Low-Dimensional Syst. Nanostructures. 2014;56:177–182. doi: 10.1016/j.physe.2013.09.003. DOI

Myers K, Wang Q, Dexheimer S. Ultrafast carrier dynamics in nanocrystalline silicon. Phys. Rev. B. 2001;64:2–5. doi: 10.1103/PhysRevB.64.161309. DOI

Chepic DI, et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 1990;47:113–127. doi: 10.1016/0022-2313(90)90007-X. DOI

Robel I, Bunker BA, Kamat PV, Kuno M. Exciton recombination dynamics in CdSe nanowires: Bimolecular to three-carrier auger kinetics. Nano Lett. 2006;6:1344–1349. doi: 10.1021/nl060199z. PubMed DOI

Wang F, Wu Y, Hybertsen MS, Heinz TF. Auger recombination of excitons in one-dimensional systems. Phys. Rev. B - Condens. Matter Mater. Phys. 2006;73:1–5.

Pushkarev V, et al. Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks. Phys. Rev. B. 2017;95:125424. doi: 10.1103/PhysRevB.95.125424. DOI

Esser A, et al. Ultrafast recombination and trapping in amorphous silicon. J. Non. Cryst. Solids. 1989;114:573–575. doi: 10.1016/0022-3093(89)90654-6. DOI

Jivanescu M, Stesmans A, Zacharias M. Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals. J. Appl. Phys. 2008;104:13518. doi: 10.1063/1.2966690. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...