Interplay of bimolecular and Auger recombination in photoexcited carrier dynamics in silicon nanocrystal/silicon dioxide superlattices
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29374259
PubMed Central
PMC5786032
DOI
10.1038/s41598-018-19967-x
PII: 10.1038/s41598-018-19967-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report results of investigating carrier recombination in silicon nanocrystal/silicon dioxide superlattices. The superlattices prepared by nitrogen-free plasma enhanced chemical vapour deposition contained layers of silicon nanocrystals. Femtosecond transient transmission optical spectroscopy was used to monitor carrier mechanisms in the samples. The three-particle Auger recombination was observed in accord with previous reports. However, under high pump intensities (high photoexcited carrier densities) the bimolecular process dominated the recombination. Detailed analysis of measured data and fitting procedure made it possible to follow and quantify the interplay between the two recombination processes. The bimolecular recombination was interpreted in terms of the trap-assisted Auger recombination.
Zobrazit více v PubMed
Htoon H, Hollingsworth JA, Dickerson R, Klimov VI. Effect of Zero- to One-Dimensional Transformation on Multiparticle Auger Recombination in Semiconductor Quantum Rods. Phys. Rev. Lett. 2003;91:227401. doi: 10.1103/PhysRevLett.91.227401. PubMed DOI
Klimov VI. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B. 2000;104:6112–6123. doi: 10.1021/jp9944132. DOI
Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science (80-.). 2000;287:1011–1013. doi: 10.1126/science.287.5455.1011. PubMed DOI
Puritis T, Kaupuzs J. Photoluminescence from silicon nanocrystals initiated by Auger recombination. Phys. E Low-dimensional Syst. Nanostructures. 2006;35:16–22.
Trinh MT, Limpens R, Gregorkiewicz T. Experimental Investigations and Modeling of Auger Recombination in Silicon Nanocrystals. J. Phys. Chem. C. 2013;117:5963–5968. doi: 10.1021/jp311124c. DOI
Suna A. Kinematics of Exciton-Exciton Annihilation in Molecular Crystals. Phys. Rev. B. 1970;1:1716–1739. doi: 10.1103/PhysRevB.1.1716. DOI
Valkunas L, Ma Y-Z, Fleming GR. Exciton-exciton annihilation in single-walled carbon nanotubes. Phys. Rev. B. 2006;73:115432. doi: 10.1103/PhysRevB.73.115432. PubMed DOI
Haug A, Schmid W. Recombination mechanism in heavily doped silicon. Solid. State. Electron. 1982;25:665–667. doi: 10.1016/0038-1101(82)90069-7. DOI
Cohn, A. W., Schimpf, A. M., Gunthardt, C. E. & Gamelin, D. R. Size-Dependent Trap-Assisted Auger Recombination in Semiconductor Nanocrystals., 10.1021/nl400503s (2013). PubMed
Mora-Sero I, et al. Recombination in Quantum Dot Sensitized Solar Cells. Acc. Chem. Res. 2009;42:1848–1857. doi: 10.1021/ar900134d. PubMed DOI
Klimov VI. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007;58:635–673. doi: 10.1146/annurev.physchem.58.032806.104537. PubMed DOI
Sun J, et al. Photocarrier recombination dynamics in ternary chalcogenide CuInS 2 quantum dots. Phys. Chem. Chem. Phys. 2015;17:11981–11989. doi: 10.1039/C5CP00034C. PubMed DOI
Kořínek M, et al. Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals. Appl. Surf. Sci. 2016;377:238–243. doi: 10.1016/j.apsusc.2016.03.121. DOI
Othonos A, Lioudakis E, Nassiopoulou AG. Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit auger recombination. Nanoscale Res. Lett. 2008;3:315–320. doi: 10.1007/s11671-008-9159-8. DOI
Laube, J. et al. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 116 (2014).
López-Vidrier, J. et al. Annealing temperature and barrier thickness effect on the structural and optical properties of silicon nanocrystals/SiO2 superlattices. J. Appl. Phys. 116 (2014).
Hiller D, et al. Nitrogen at the Si-nanocrystal/SiO2 interface and its influence on luminescence and interface defects. Phys. Rev. B - Condens. Matter Mater. Phys. 2010;82:1–9. doi: 10.1103/PhysRevB.82.195401. DOI
Laube, J. et al. Two-dimensional percolation threshold in confined Si nanoparticle networks. Appl. Phys. Lett. 108 (2016).
Rohlfing, M., Kriiger, P. & Pollmann, J. Si, SiC. 48 (1993).
Kozák M, et al. Hot-phonon-induced indirect absorption in silicon nanocrystals. J. Appl. Phys. 2013;114:1–6. doi: 10.1063/1.4829006. DOI
Liu H, Pfost D, Tauc J. Photoinduced free-carrier absorption in microcrystalline silicon. Solid State Commun. 1984;50:987–990. doi: 10.1016/0038-1098(84)90271-0. DOI
Kudrna J, et al. Ultrafast carrier dynamics in undoped microcrystalline silicon. Mater. Sci. Eng. B. 2000;69–70:238–242. doi: 10.1016/S0921-5107(99)00302-5. DOI
Kořínek M, et al. Photoexcited charge carrier dynamics in silicon nanocrystal/SiO2 superlattices. Phys. E Low-Dimensional Syst. Nanostructures. 2014;56:177–182. doi: 10.1016/j.physe.2013.09.003. DOI
Myers K, Wang Q, Dexheimer S. Ultrafast carrier dynamics in nanocrystalline silicon. Phys. Rev. B. 2001;64:2–5. doi: 10.1103/PhysRevB.64.161309. DOI
Chepic DI, et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 1990;47:113–127. doi: 10.1016/0022-2313(90)90007-X. DOI
Robel I, Bunker BA, Kamat PV, Kuno M. Exciton recombination dynamics in CdSe nanowires: Bimolecular to three-carrier auger kinetics. Nano Lett. 2006;6:1344–1349. doi: 10.1021/nl060199z. PubMed DOI
Wang F, Wu Y, Hybertsen MS, Heinz TF. Auger recombination of excitons in one-dimensional systems. Phys. Rev. B - Condens. Matter Mater. Phys. 2006;73:1–5.
Pushkarev V, et al. Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks. Phys. Rev. B. 2017;95:125424. doi: 10.1103/PhysRevB.95.125424. DOI
Esser A, et al. Ultrafast recombination and trapping in amorphous silicon. J. Non. Cryst. Solids. 1989;114:573–575. doi: 10.1016/0022-3093(89)90654-6. DOI
Jivanescu M, Stesmans A, Zacharias M. Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals. J. Appl. Phys. 2008;104:13518. doi: 10.1063/1.2966690. DOI
Separating single- from multi-particle dynamics in nonlinear spectroscopy