Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28837101
PubMed Central
PMC5615642
DOI
10.3390/ma10090987
PII: ma10090987
Knihovny.cz E-zdroje
- Klíčová slova
- bone augmentation, plasma spray, porosity, titanium,
- Publikační typ
- časopisecké články MeSH
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young's modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.
Zobrazit více v PubMed
Damien C.J., Parsons J.R. Bone graft and bone graft substitutes: A review of current technology and applications. J. Appl. Biomater. 1991;2:187–208. doi: 10.1002/jab.770020307. PubMed DOI
Torres Y., Trueba P., Pavón J.J., Chicardi E., Kamm P., García-Moreno F., Rodríguez-Ortiz J.A. Design, processing and characterization of titanium with radial graded porosity for bone implants. Mater. Des. 2016;110:179–187. doi: 10.1016/j.matdes.2016.07.135. DOI
Wiria F.E., Shyan J.Y.M., Lim P.N., Wen F.G.C., Yeo J.F., Cao T. Printing of titanium implant prototype. Mater. Des. 2010;31(Suppl. 1):S101–S105. doi: 10.1016/j.matdes.2009.12.050. DOI
Ye Q., He G. In-situ formed graded microporous structure in titanium alloys and its effect on the mechanical properties. Mater. Des. 2015;83:295–300. doi: 10.1016/j.matdes.2015.06.066. DOI
de Obaldia E.E., Jeong C., Grunenfelder L.K., Kisailus D., Zavattieri P. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. J. Mech. Behav. Biomed. Mater. 2015;48:70–85. doi: 10.1016/j.jmbbm.2015.03.026. PubMed DOI
Jiang G., Li Q., Wang C., Dong J., He G. Fabrication of graded porous titanium–magnesium composite for load-bearing biomedical applications. Mater. Des. 2015;67:354–359. doi: 10.1016/j.matdes.2014.12.001. DOI
Kammerlander C., Neuerburg C., Verlaan J.-J., Schmoelz W., Miclau T., Larsson S. The use of augmentation techniques in osteoporotic fracture fixation. Injury. 2016;47(Suppl. 2):S36–S43. doi: 10.1016/S0020-1383(16)47007-5. PubMed DOI
Bandyopadhyay A., Espana F., Balla V.K., Bose S., Ohgami Y., Davies N.M. Influence of porosity on mechanical properties and in vivo response of ti6al4v implants. Acta Biomater. 2010;6:1640–1648. doi: 10.1016/j.actbio.2009.11.011. PubMed DOI PMC
Simmons C.A., Valiquette N., Pilliar R.M. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early postimplantation healing response and mechanical stability. J. Biomed. Mater. Res. 1999;47:127–138. doi: 10.1002/(SICI)1097-4636(199911)47:2<127::AID-JBM3>3.0.CO;2-C. PubMed DOI
Ong J.L., Carnes D.L., Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials. 2004;25:4601–4606. doi: 10.1016/j.biomaterials.2003.11.053. PubMed DOI
Yoon B.J.V., Xavier F., Walker B.R., Grinberg S., Cammisa F.P., Abjornson C. Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Spine J. 2016;16:1238–1243. doi: 10.1016/j.spinee.2016.05.017. PubMed DOI
Reclaru L., Eschler P.-Y., Lerf R., Blatter A. Electrochemical corrosion and metal ion release from Co-Cr-Mo prosthesis with titanium plasma spray coating. Biomaterials. 2005;26:4747–4756. doi: 10.1016/j.biomaterials.2005.01.004. PubMed DOI
Yang Y.Z., Tian J.M., Tian J.T., Chen Z.Q., Deng X.J., Zhang D.H. Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying. J. Biomed. Mater. Res. 2000;52:333–337. doi: 10.1002/1097-4636(200011)52:2<333::AID-JBM12>3.0.CO;2-T. PubMed DOI
Xue W., Liu X., Zheng X., Ding C. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials. 2005;26:3029–3037. doi: 10.1016/j.biomaterials.2004.09.003. PubMed DOI
Nishiguchi S., Kato H., Neo M., Oka M., Kim H.-M., Kokubo T., Nakamura T. Alkali- and heat-treated porous titanium for orthopedic implants. J. Biomed. Mater. Res. 2001;54:198–208. doi: 10.1002/1097-4636(200102)54:2<198::AID-JBM6>3.0.CO;2-7. PubMed DOI
Ajaja J., Goldbaum D., Chromik R.R. Characterization of ti cold spray coatings by indentation methods. Acta Astronaut. 2011;69:923–928. doi: 10.1016/j.actaastro.2011.06.012. DOI
Kosarev V.F., Klinkov S.V., Alkhimov A.P., Papyrin A.N. On some aspects of gas dynamics of the cold spray process. J. Therm. Spray Technol. 2003;12:265–281. doi: 10.1361/105996303770348384. DOI
Gardon M., Latorre A., Torrell M., Dosta S., Fernández J., Guilemany J.M. Cold gas spray titanium coatings onto a biocompatible polymer. Mater. Lett. 2013;106:97–99. doi: 10.1016/j.matlet.2013.04.115. DOI
Hermanek F.J. What is thermal spray? [(accessed on 4 August 2017)]; Available online: www.thermalspray.org.
Smith M.F. Comparing cold spray with thermal spray coating technologies. In: Champagne V.K., editor. The Cold Spray Materials Deposition Process: Fundamentals and Applications. Woodhead Publishing Limited; Cambridge, UK: 2007. pp. 43–61.
Sun J., Han Y., Cui K. Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Mater. Lett. 2008;62:3623–3625. doi: 10.1016/j.matlet.2008.04.011. DOI
Jaeggi C., Frauchiger V., Eitel F., Stiefel M., Schmotzer H., Siegmann S. The effect of surface alloying of ti powder for vacuum plasma spraying of open porous titanium coatings. Acta Mater. 2011;59:717–725. doi: 10.1016/j.actamat.2010.10.010. DOI
Salimijazi H.R., Raessi M., Mostaghimi J., Coyle T.W. Study of solidification behavior and splat morphology of vacuum plasma sprayed ti alloy by computational modeling and experimental results. Surf. Coat. Technol. 2007;201:7924–7931. doi: 10.1016/j.surfcoat.2007.03.037. DOI
Feng B., Weng J., Yang B., Chen J., Zhao J., He L., Qi S., Zhang X. Surface characterization of titanium and adsorption of bovine serum albumin. Mater. Charact. 2002;49:129–137. doi: 10.1016/S1044-5803(02)00341-8. DOI
Sampath S., Herman H. Rapid solidification and microstructure development during plasma spray deposition. J. Therm. Spray Technol. 1996;5:445–456. doi: 10.1007/BF02645275. DOI
Sampath S., Herman H. Plasma spray forming metals, intermetallics, and composites. JOM. 1993;45:42–49. doi: 10.1007/BF03222381. DOI
Kim H.S., Hong B.G., Moon S.Y. Thick tungsten layer coating on ferritic-martensitic steel without interlayer using a dc vacuum plasma spray and a rf low pressure plasma spray method. Thin Solid Films. 2017;623:59–64. doi: 10.1016/j.tsf.2016.12.049. DOI
Klawitter J.J., Hulbert S.F. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J. Biomed. Mater. Res. 1971;5:161–229. doi: 10.1002/jbm.820050613. DOI
Jones A.C., Arns C.H., Sheppard A.P., Hutmacher D.W., Milthorpe B.K., Knackstedt M.A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–2504. doi: 10.1016/j.biomaterials.2007.01.046. PubMed DOI
Bobyn J.D., Pilliar R.M., Cameron H.U., Weatherly G.C. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980;150:263–270. doi: 10.1097/00003086-198007000-00045. PubMed DOI
Čapek J., Machová M., Fousová M., Kubásek J., Vojtěch D., Fojt J., Jablonská E., Lipov J., Ruml T. Highly porous, low elastic modulus 316l stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C. 2016;69:631–639. doi: 10.1016/j.msec.2016.07.027. PubMed DOI
Ascenzi A., Baschieri P., Benvenuti A. The bending properties of single osteons. J. Biomech. 1990;23:763–771. doi: 10.1016/0021-9290(90)90023-V. PubMed DOI
Currey J.D. What determines the bending strength of compact bone? J. Exp. Biol. 1999;202:2495–2503. PubMed
Wang X., Nyman J.S., Dong X., Leng H., Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. Morgan & Claypool Publishers; San Rafael, CA, USA: 2010. Mechanical behavior of bone; p. 225.
Brunette D.M., Tengvall P., Textor M., Thomsen P. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Springer; Berlin/Heidelberg, Germany: 2012.
Vagaská B., Bacakova L., Filová E., Balík K. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol. Res. 2010;59:309. PubMed
Martin J.Y., Schwartz Z., Hummert T.W., Schraub D.M., Simpson J., Lankford J., Dean D.D., Cochran D.L., Boyan B.D. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (mg63) J. Biomed. Mater. Res. 1995;29:389–401. doi: 10.1002/jbm.820290314. PubMed DOI
Borsari V., Giavaresi G., Fini M., Torricelli P., Tschon M., Chiesa R., Chiusoli L., Salito A., Volpert A., Giardino R. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials. 2005;26:4948–4955. doi: 10.1016/j.biomaterials.2005.01.010. PubMed DOI
Takemoto M., Fujibayashi S., Neo M., Suzuki J., Kokubo T., Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005;26:6014–6023. doi: 10.1016/j.biomaterials.2005.03.019. PubMed DOI