• This record comes from PubMed

Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality

. 2017 Aug 23 ; 3 (8) : 868-874. [epub] 20170724

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Recoverin is a neuronal calcium sensor involved in vision adaptation that reversibly associates with cellular membranes via its calcium-activated myristoyl switch. While experimental evidence shows that the myristoyl group significantly enhances membrane affinity of this protein, molecular details of the binding process are still under debate. Here, we present results of extensive molecular dynamics simulations of recoverin in the proximity of a phospholipid bilayer. We capture multiple events of spontaneous membrane insertion of the myristoyl moiety and confirm its critical role in the membrane binding. Moreover, we observe that the binding strongly depends on the conformation of the N-terminal domain. We propose that a suitable conformation of the N-terminal domain can be stabilized by the disordered C-terminal segment or by binding of the target enzyme, i.e., rhodopsin kinase. Finally, we find that the presence of negatively charged lipids in the bilayer stabilizes a physiologically functional orientation of the membrane-bound recoverin.

See more in PubMed

Farazi T. A.; Waksman G.; Gordon J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 2001, 276 (43), 39501–39504. 10.1074/jbc.R100042200. PubMed DOI

Resh M. D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat. Chem. Biol. 2006, 2 (11), 584–590. 10.1038/nchembio834. PubMed DOI

Burgoyne R. D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 2007, 8 (3), 182–193. 10.1038/nrn2093. PubMed DOI PMC

Burgoyne R. D.; O'Callaghan D. W.; Hasdemir B.; Haynes L. P.; Tepikin A. V. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci. 2004, 27 (4), 203–209. 10.1016/j.tins.2004.01.010. PubMed DOI

Burgoyne R. D. The neuronal calcium-sensor proteins. Biochim. Biophys. Acta, Mol. Cell Res. 2004, 1742, 59–68. 10.1016/j.bbamcr.2004.08.008. PubMed DOI

Ames J. B.; Lim S. Molecular structure and target recognition of neuronal calcium sensor proteins. Biochim. Biophys. Acta, Gen. Subj. 2012, 1820 (8), 1205–1213. 10.1016/j.bbagen.2011.10.003. PubMed DOI PMC

Tanaka T.; Ames J. B.; Harvey T. S.; Stryer L.; Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 1995, 376 (6539), 444–447. 10.1038/376444a0. PubMed DOI

Ames J. B.; Ishima R.; Tanaka T.; Gordon J. I.; Stryer L.; Ikura M. Molecular mechanics of calcium–myristoyl switches. Nature 1997, 389 (6647), 198–202. 10.1038/38310. PubMed DOI

Desmeules P.; Grandbois M.; Bondarenko V. A.; Yamazaki A.; Salesse C. Measurement of Membrane Binding between Recoverin, a Calcium-Myristoyl Switch Protein, and Lipid Bilayers by AFM-Based Force Spectroscopy. Biophys. J. 2002, 82 (6), 3343–3350. 10.1016/S0006-3495(02)75674-9. PubMed DOI PMC

Desmeules P.; Penney S.-É.; Desbat B.; Salesse C. Determination of the Contribution of the Myristoyl Group and Hydrophobic Amino Acids of Recoverin on its Dynamics of Binding to Lipid Monolayers. Biophys. J. 2007, 93 (6), 2069–2082. 10.1529/biophysj.106.103481. PubMed DOI PMC

Valentine K. G.; Mesleh M. F.; Opella S. J.; Ikura M.; Ames J. B. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry 2003, 42 (21), 6333–6340. 10.1021/bi0206816. PubMed DOI

McLaughlin S.; Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 1995, 20 (7), 272–276. 10.1016/S0968-0004(00)89042-8. PubMed DOI

Murray D.; Ben-Tal N.; Honig B.; McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 1997, 5 (8), 985–989. 10.1016/S0969-2126(97)00251-7. PubMed DOI

Senin I. I.; Churumova V. A.; Philippov P. P.; Koch K.-W. Membrane binding of the neuronal calcium sensor recoverin – modulatory role of the charged carboxy-terminus. BMC Biochem. 2007, 8, 24.10.1186/1471-2091-8-24. PubMed DOI PMC

Calvez P.; Schmidt T. F.; Cantin L.; Klinker K.; Salesse C. Phosphatidylserine allows observation of the calcium-myristoyl switch of recoverin and its preferential binding. J. Am. Chem. Soc. 2016, 138 (41), 13533–13540. 10.1021/jacs.6b04218. PubMed DOI

Matsuda S.; Hisatomi O.; Tokunaga F. Role of Carboxyl-Terminal Charges on S-Modulin Membrane Affinity and Inhibition of Rhodopsin Phosphorylation. Biochemistry 1999, 38 (4), 1310–1315. 10.1021/bi982117u. PubMed DOI

Weiergraber O. H.; Senin I. I.; Philippov P. P.; Granzin J.; Koch K. W. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J. Biol. Chem. 2003, 278 (25), 22972–22979. 10.1074/jbc.M300447200. PubMed DOI

Weiergraber O. H.; Senin I. I.; Zernii E. Y.; Churumova V. A.; Kovaleva N. A.; Nazipova A. A.; Permyakov S. E.; Permyakov E. A.; Philippov P. P.; Granzin J.; Koch K. W. Tuning of a neuronal calcium sensor. J. Biol. Chem. 2006, 281 (49), 37594–37602. 10.1074/jbc.M603700200. PubMed DOI

Wu G.; Hubbell W. L. Phospholipid asymmetry and transmembrane diffusion in photoreceptor disc membranes. Biochemistry 1993, 32 (3), 879–88. 10.1021/bi00054a020. PubMed DOI

Pool C. T.; Thompson T. E. Chain length and temperature dependence of the reversible association of model acylated proteins with lipid bilayers. Biochemistry 1998, 37 (28), 10246–10255. 10.1021/bi980385m. PubMed DOI

Peitzsch R. M.; McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 1993, 32 (39), 10436–43. 10.1021/bi00090a020. PubMed DOI

Marrink S. J.; Tieleman D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42 (16), 6801–6822. 10.1039/c3cs60093a. PubMed DOI

Pleskot R.; Cwiklik L.; Jungwirth P.; Zarsky V.; Potocky M. Membrane targeting of the yeast exocyst complex. Biochim. Biophys. Acta, Biomembr. 2015, 1848 (7), 1481–1489. 10.1016/j.bbamem.2015.03.026. PubMed DOI

Herzog F. A.; Braun L.; Schoen I.; Vogel V. Structural Insights How PIP2 Imposes Preferred Binding Orientations of FAK at Lipid Membranes. J. Phys. Chem. B 2017, 121 (15), 3523–3535. 10.1021/acs.jpcb.6b09349. PubMed DOI

Navratilova V.; Paloncyova M.; Berka K.; Otyepka M. Effect of Lipid Charge on Membrane Immersion of Cytochrome P450 3A4. J. Phys. Chem. B 2016, 120 (43), 11205–11213. 10.1021/acs.jpcb.6b10108. PubMed DOI

Zhu Y.; Yang S.; Qi R.; Zou Y.; Ma B.; Nussinov R.; Zhang Q. Effects of the C-Terminal Tail on the Conformational Dynamics of Human Neuronal Calcium Sensor-1 Protein. J. Phys. Chem. B 2015, 119, 14236–14244. 10.1021/acs.jpcb.5b07962. PubMed DOI PMC

Bellucci L.; Corni S.; Felice R. D.; Paci E. The Structure of Neuronal Calcium Sensor-1 in Solution Revealed by Molecular Dynamics Simulations. PLoS One 2013, 8 (9), e74383.10.1371/journal.pone.0074383. PubMed DOI PMC

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Jo S.; Kim T.; Iyer V. G.; Im W. Software news and updates - CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29 (11), 1859–1865. 10.1002/jcc.20945. PubMed DOI

Jo S.; Lim J. B.; Klauda J. B.; Im W. CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes. Biophys. J. 2009, 97 (1), 50–58. 10.1016/j.bpj.2009.04.013. PubMed DOI PMC

Wu E. L.; Cheng X.; Jo S.; Rui H.; Song K. C.; Davila-Contreras E. M.; Qi Y. F.; Lee J. M.; Monje-Galvan V.; Venable R. M.; Klauda J. B.; Im W. CHARMM-GUI Membrane Builder Toward Realistic Biological Membrane Simulations. J. Comput. Chem. 2014, 35 (27), 1997–2004. 10.1002/jcc.23702. PubMed DOI PMC

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D.; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114 (23), 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; Joseph-McCarthy D.; Kuchnir L.; Kuczera K.; Lau F. T. K.; Mattos C.; Michnick S.; Ngo T.; Nguyen D. T.; Prodhom B.; Reiher W. E.; Roux B.; Schlenkrich M.; Smith J. C.; Stote R.; Straub J.; Watanabe M.; Wiorkiewicz-Kuczera J.; Yin D.; Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102 (18), 3586–3616. 10.1021/jp973084f. PubMed DOI

MacKerell A. D.; Feig M.; Brooks C. L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25 (11), 1400–1415. 10.1002/jcc.20065. PubMed DOI

Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct., Funct., Genet. 2010, 78 (8), 1950–1958. 10.1002/prot.22711. PubMed DOI PMC

Jambeck J. P. M.; Lyubartsev A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116 (10), 3164–3179. 10.1021/jp212503e. PubMed DOI PMC

Jambeck J. P. M.; Lyubartsev A. P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J. Chem. Theory Comput. 2012, 8 (8), 2938–2948. 10.1021/ct300342n. PubMed DOI

Jambeck J. P. M.; Lyubartsev A. P. Another Piece of the Membrane Puzzle: Extending Slipids Further. J. Chem. Theory Comput. 2013, 9 (1), 774–784. 10.1021/ct300777p. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI

Kumar S.; Bouzida D.; Swendsen R. H.; Kollman P. A.; Rosenberg J. M. The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. 1. The Method. J. Comput. Chem. 1992, 13 (8), 1011–1021. 10.1002/jcc.540130812. DOI

Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S. J. The MARTINI coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 2008, 4 (5), 819–834. 10.1021/ct700324x. PubMed DOI

Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4 (3), 435–447. 10.1021/ct700301q. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...