Growth form evolution and hybridization in Senecio (Asteraceae) from the high equatorial Andes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28861248
PubMed Central
PMC5574811
DOI
10.1002/ece3.3206
PII: ECE33206
Knihovny.cz E-zdroje
- Klíčová slova
- Andes, Culcitium, Lasiocephalus, Neotropical montane forest, Senecio, adaptive radiation, growth forms, hybridization, páramo,
- Publikační typ
- časopisecké články MeSH
Changes in growth forms frequently accompany plant adaptive radiations, including páramo-a high-elevation treeless habitat type of the northern Andes. We tested whether diverse group of Senecio inhabiting montane forests and páramo represented such growth form changes. We also investigated the role of Andean geography and environment in structuring genetic variation of this group. We sampled 108 populations and 28 species of Senecio (focusing on species from former genera Lasiocephalus and Culcitium) and analyzed their genetic relationships and patterns of intraspecific variation using DNA fingerprinting (AFLPs) and nuclear DNA sequences (ITS). We partitioned genetic variation into environmental and geographical components. ITS-based phylogeny supported monophyly of a Lasiocephalus-Culcitium clade. A grade of herbaceous alpine Senecio species subtended the Lasiocephalus-Culcitium clade suggesting a change from the herbaceous to the woody growth form. Both ITS sequences and the AFLPs separated a group composed of the majority of páramo subshrubs from other group(s) comprising both forest and páramo species of various growth forms. These morphologically variable group(s) further split into clades encompassing both the páramo subshrubs and forest lianas, indicating independent switches among the growth forms and habitats. The finest AFLP genetic structure corresponded to morphologically delimited species except in two independent cases in which patterns of genetic variation instead reflected geography. Several morphologically variable species were genetically admixed, which suggests possible hybrid origins. Latitude and longitude accounted for 5%-8% of genetic variation in each of three AFLP groups, while the proportion of variation attributed to environment varied between 8% and 31% among them. A change from the herbaceous to the woody growth form is suggested for species of high-elevation Andean Senecio. Independent switches between habitats and growth forms likely occurred within the group. Hybridization likely played an important role in species diversification.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Escuela de Ciencias Biológicas Pontificia Universidad Católica del Ecuador Quito Ecuador
Institute of Botany Slovak Academy of Sciences Bratislava Slovak Republic
National Centre for Biosystematics Natural History Museum University of Oslo Oslo Norway
Zobrazit více v PubMed
Alvarez, I. , & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434. PubMed
Andersson, L. , Kocsis, M. , & Eriksson, R. (2006). Relationships of the genus
Antonelli, A. , Nylander, J. A. A. , Persson, C. , & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 106, 9749–9754. PubMed PMC
Beaulieu, J. M. , O'Meara, B. C. , & Donoghue, M. J. (2013). Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Systematic Biology, 62, 725–737. PubMed
Bello, M. A. , Chase, M. W. , Olmstead, R. G. , Rønsted, N. , & Albach, D. (2002). The páramo endemic
Bonin, A. , Bellemain, E. , Eidesen, P. B. , Pompanon, F. , Brochmann, C. , & Taberlet, P. (2004). How to track and assess genotyping errors in population genetic studies. Molecular Ecology, 13, 3261–3273. PubMed
Borcard, D. , Legendre, P. , & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.
ter Braak, C. J. F. , & Šmilauer, P. (1998). CANOCO reference manual and user's guide to Canoco for Windows. Centre of Biometry: Wageningen.
Calvo, J. , & Freire, E. (2016). A nomenclator of
Chacón, J. , Madriñán, S. , Chase, M. W. , & Bruhl, J. J. (2006). Molecular phylogenetics of
Churchill S. P., Balslev H., Forero E., & Luteyn J. L. (Eds.) (1995). Biodiversity and conservation of Neotropical montane forests. New York, NY: The New York Botanical Garden Press.
Cuatrecasas, J. (1978). Studies in neotropical Senecioneae, Compositae I. Reinstatement of genus
Cuatrecasas, J. (1986). Speciation and radiation of the Espeletiinae in the Andes In Vuilleumier F., & Monasterio M. (Eds.), High altitude tropical biogeography (pp. 267–303). Oxford: Oxford University Press.
Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. PubMed PMC
Dušková, E. , Kolář, F. , Sklenář, P. , Kubešová, M. , Rauchová, J. , Fér, T. , … Marhold, K. (2010). Genome size correlates to growth forms, habitat and phylogeny in the Andean genus
Ehrich, D. (2006). AFLPdat: A collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604.
Evanno, G. , Regnaut, S. , & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620. PubMed
Excoffier, L. , Smouse, P. E. , & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491. PubMed PMC
Falush, D. , Stephens, M. , & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574–578. PubMed PMC
Fernández‐Alonso, J. L. (1995). Scrophulariaceae‐Aragoeae. Flora de Colombia 16. Bogotá: Instituto de Ciencias Naturales.
Fisher, A. E. , Triplett, J. K. , Ho, C.‐S. , Schiller, A. D. , Oltrogge, K. A. , Schroder, E. S. , … Clark, L. G. (2009). Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae) and a revised infrageneric classification for
Freckleton, R. P. , Harvey, P. H. , & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726. PubMed
van der Hammen, T. , & Cleef, A. M. (1986). Development of the high Andean páramo flora and vegetation In Vuilleumier F., & Monasterio M. (Eds.), High altitude tropical biogeography (pp. 153–201). Oxford: Oxford University Press.
Hershkovitz, M. A. , Arroyo, M. T. K. , Bell, C. , & Hinojosa, L. F. (2006). Phylogeny of PubMed
Hijmans, R. J. , Cameron, S. E. , Parra, J. L. , Jones, P. G. , & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Hodálová, I. , & Marhold, K. (1996). Sympatric population of
Hoorn, C. , Wesselingh, F. P. , ter Steege, H. , Bermudez, M. A. , Mora, A. , Sevink, J. … Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931. PubMed
Hughes, C. E. , & Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America, 103, 10334–10339. PubMed PMC
Hughes, C. E. , Pennington, R. T. , & Antonelli, A. (2013). Neotropical plant evolution: Assembling the big picture. Botanical Journal of the Linnean Society, 171, 1–18.
Ihaka, R. , & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299–314.
Jabaily, R. S. , & Sytsma, K. J. (2012). Historical biogeography and life‐history evolution of Andean
Jørgensen, P. M. , & Ulloa, C. U. (1994). Seed plants of the high Andes of Ecuador ‐ a checklist. AAU Reports, 34, 1–443.
Karaman‐Castro, V. , & Urbatsch, L. E. (2009). Phylogeny of
Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. PubMed PMC
Kirchheimer, B. , Schinkel, C. C. F. , Dellinger, A. S. , et al. (2016). A matter of scale: Apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 43, 716–726. PubMed PMC
Kirk, H. , Máčel, M. , Klinkhamer, P. G. L. , & Vrieling, K. (2004). Natural hybridization between PubMed
Knox, E. B. , Muasya, A. M. , & Nuchhaala, N. (2008). The predominantly South American clade of Lobeliaceae. Systematic Botany, 33, 462–468.
Kolář, F. , Dušková, E. , & Sklenář, P. (2016). Niche shifts and range expansions along cordilleras drove diversification in a high‐elevation endemic plant genus in the tropical Andes. Molecular Ecology, 25, 4593–4610. PubMed
Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England), 30, 3276–3278. PubMed PMC
Lowe, A. J. , & Abbott, R. J. (2000). Routes of origin of two recently evolved hybrid taxa: PubMed
Luebert, F. , & Weigend, M. (2014). Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2, 27 https://doi.org/10.3389/fevo.2014.00027. DOI
Luo, D. , Yue, J.‐P. , Sun, W.‐G. , Xu, B. , Li, Z.‐M. , Comes, H. P. , & Sun, H. (2016). Evolutionary history of the subnival flora of the Himalaya‐Hengduan Mountains: First insights from comparative phylogeography of four perennial herbs. Journal of Biogeography, 43, 31–43.
Luteyn, J. L. (1999). Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden, 84, 1–278.
Madriñán, S. , Cortés, A. J. , & Richardson, J. E. (2013). Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4, 192 https://doi.org/10.3389/fgene.2013.00192. PubMed DOI PMC
Myers, N. , Mittermaier, R. A. , Mittermaier, C. G. , da Fonseca, G. A. B. , & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. PubMed
Nordborg, M. , Hu, T. T. , Ishino, Y. , Jhaveri, J. , Toomajian, C. , Zheng, H. , Bakker, E. , et al. (2005). The pattern of polymorphism in PubMed DOI PMC
Osborne, O. G. , Chapman, M. A. , Nevado, B. , & Filatov, D. A. (2016). Maintenance of species boundaries despote ongoing gene flow in ragworts. Genome Biology and Evolution, 8, 1038–1047. PubMed PMC
Panero, J. L. , Jansen, R. K. , & Clevinger, J. A. (1999). Phylogenetic relationships of subtribe Ecliptinae (Asteraceae: Heliantheae) based on chloroplast DNA restriction site data. American Journal of Botany, 86, 413–427. PubMed
Pedraza‐Peñalosa, P. (2009). Systematics of the neotropical blueberry genus
Pelser, P. B. , Kennedy, A. H. , Tepe, E. J. , Shidler, J. B. , Nordenstam, B. , Kadereit, J. W. , & Watson, L. E. (2010). Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany, 97, 856–873. PubMed
Pelser, P. B. , Nordenstam, B. , Kadereit, J. W. , & Watson, L. E. (2007). An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation
Pennell, M. W. , Eastman, J. M. , Slater, G. J. , Brown, J. W. , Uyeda, J. C. , FitzJohn, R. G. , … Harmon, L. J. (2014). Geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 15, 2216–2218. PubMed
Rauscher, J. T. (2002). Molecular phylogenetics of the PubMed
Ronquist, F. , & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. PubMed
Schlüter, P. M. , & Harris, S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 6, 569–572.
Schmidt‐Lebuhn, A. N. , Kessler, M. , & Kumar, M. (2006). Promiscuity in the Andes: Species relationships in
Sklenář, P. , Dušková, E. , & Balslev, H. (2011). Tropical and temperate: Evolutionary history of páramo flora. The Botanical Review, 77, 71–108.
Šmilauer, P. , & Lepš, J. (2014). Multivariate analysis of ecological data using Canoco 5, 2nd ed. Cambridge: Cambridge University Press.
Swofford, D. (2002). PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland, MA: Sinauer Associates.
Tremetsberger, K. , Stuessy, F. D. , Kadlec, G. , Urtubey, E. , Baeza, C. M. , Beck, S. G. , Valdebenito, H. A. , et al. (2006). AFLP phylogeny of South American species of
Tribsch, A. , Schönswetter, P. , & Stuessy, T. F. (2002). PubMed
Turner, B. , Paun, O. , Munzinger, J. , Duangjai, S. , Chase, M. W. , & Samuel, R. (2013). Analysis of amplified fragment length polymorphism (AFLP) indicate rapid radiation of PubMed PMC
Uribe‐Convers, S. , Settles, M. L. , & Tank, D. C. (2016). A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of PubMed DOI PMC
Vargas, P. (2003). Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon, 52, 463–476.
Vásquez, D. L. A. , Balslev, H. , Hansen, M. M. , Sklenář, P. , & Romoleroux, K. (2016). Low genetic variation and high differentiation across sky island populations of
Vos, P. , Hogers, R. , Bleeker, M. , Reijans, M. , van de Lee, T. , Hornes, M. , Frijters, A. , et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414. PubMed PMC
Wagstaff, S. J. , & Garnock‐Jones, P. J. (2000). Patterns of diversification in
White, T. J. , Bruns, T. , Lee, S. , & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In Innis M. A., Gelfand D. H., Sninsky J. J., & White T. J. (Ed.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.
Wilkström, N. , Kenrick, P. , & Chase, M. (1999). Epiphytism and terrestrialization in tropical
Winkworth, R. C. , Wagstaff, S. J. , Glenny, D. , & Lockhart, P. J. (2005). Evolution of the New Zealand mountain flora: Origins, diversification and dispersal. Organisms, Diversity & Evolution, 5, 237–247.
Zhivotovsky, L. A. (1999). Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology, 8, 907–913. PubMed