Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28861402
PubMed Central
PMC5562928
DOI
10.3389/fcimb.2017.00375
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Ixodes scapularis, glycerol- 3-phosphate, phosphoenolpyruvate, proteomics, transcriptomics,
- MeSH
- aminokyseliny metabolismus MeSH
- Anaplasma phagocytophilum účinky léků genetika metabolismus patogenita MeSH
- anaplasmóza MeSH
- apoptóza MeSH
- bakteriální proteiny genetika metabolismus MeSH
- buněčné linie MeSH
- citrátový cyklus MeSH
- fosfoenolpyruvát metabolismus farmakologie MeSH
- fosfoenolpyruvátkarboxykinasa (závislá na ATP) metabolismus MeSH
- genom bakteriální MeSH
- glukoneogeneze MeSH
- glykolýza MeSH
- interakce hostitele a patogenu fyziologie MeSH
- klíště mikrobiologie MeSH
- kyselina oxaloctová metabolismus MeSH
- messenger RNA genetika MeSH
- metabolické sítě a dráhy genetika MeSH
- metabolismus sacharidů MeSH
- mitochondrie metabolismus MeSH
- proteomika metody MeSH
- serin metabolismus MeSH
- transkriptom MeSH
- tyrosin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- bakteriální proteiny MeSH
- fosfoenolpyruvát MeSH
- fosfoenolpyruvátkarboxykinasa (závislá na ATP) MeSH
- kyselina oxaloctová MeSH
- messenger RNA MeSH
- serin MeSH
- tyrosin MeSH
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host-pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis, the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium because it cannot actively carry out glycolysis to produce PEP, excess of this metabolite may be toxic for A. phagocytophilum. The present work provides a more comprehensive view of the major amino acid metabolic pathways involved in the response to pathogen infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Cell and Molecular Biology Laboratory University of Sao PauloSao Paulo Brazil
Department of Parasitology Faculty of Science University of South BohemiaČeské Budějovice Czechia
Institute of Parasitology Biology Center Czech Academy of SciencesČeské Budějovice Czechia
SaBio Instituto de Investigación en Recursos Cinegéticos IREC Ciudad Real Spain
Zobrazit více v PubMed
Alberdi P., Ayllón N., Cabezas-Cruz A., Bell-Sakyi L., Zweygarth E., Stuen S., et al. . (2015). Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks. Tick Borne Dis. 6, 758–767. 10.1016/j.ttbdis.2015.07.001 PubMed DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Amelio I., Cutruzzolá F., Antonov A., Agostini M., Melino G. (2014). Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198. 10.1016/j.tibs.2014.02.004 PubMed DOI PMC
Antunes A., Derkaoui M., Terrade A., Denizon M., Deghmane A. E., Deutscher J., et al. . (2016). The phosphocarrier protein HPr contributes to meningococcal survival during infection. PLoS ONE 11:e0162434. 10.1371/journal.pone.0162434 PubMed DOI PMC
Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. . (2015). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC
Barabote R. D., Saier M. H., Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69, 608–634. 10.1128/MMBR.69.4.608-634.2005 PubMed DOI PMC
Baruch M., Belotserkovsky I., Hertzog B. B., Ravins M., Dov E., McIver K. S., et al. . (2014). An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 156, 97–108. 10.1016/j.cell.2013.12.007 PubMed DOI PMC
Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., et al. . (2003). Transcriptome analysis of chlamydial growth during IFN-γ-mediated persistence and reactivation. Proc. Natl. Acad. Sci. U.S.A. 100, 15971–15976. 10.1073/pnas.2535394100 PubMed DOI PMC
Berg J. M., Tymoczko J. L., Stryer L. (2002). Biochemistry, 5th Edn New York, NY: W H Freeman Press.
Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J. J., Pierce R., Villar M., et al. . (2016). Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11, 303–319. 10.1080/15592294.2016.1163460 PubMed DOI PMC
Cabezas-Cruz A., Alberdi P., Valdés J. J., Villar M., de la Fuente J. (2017a). Anaplasma phagocytophilum infection subverts carbohydrate metabolic pathways in the tick vector, Ixodes scapularis. Front. Cell. Infect. Microbiol. 7:23. 10.3389/fcimb.2017.00023 PubMed DOI PMC
Cabezas-Cruz A., Alberdi P., Valdés J. J., Villar M., de la Fuente J. (2017b). Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum. Front. Biosci. 22:4574. 10.2741/4574 PubMed DOI
Cabezas-Cruz A., Estrada-Pe-a A., Rego R. O., de la Fuente J. (2017c). Tick-pathogen ensembles: do molecular interactions lead ecological innovation? Front. Cell. Infect. Microbiol. 7:74. 10.3389/fcimb.2017.00074 PubMed DOI PMC
Chu P., Rodriguez A. R., Arulanandam B. P., Klose K. E. (2011). Tryptophan prototrophy contributes to Francisella tularensis evasion of gamma interferon-mediated host defense. Infect. Immun. 79, 2356–2361. 10.1128/IAI.01349-10 PubMed DOI PMC
de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Kocan K. M. (2016a). Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 24, 173–180. 10.1016/j.tim.2015.12.001 PubMed DOI
de la Fuente J., Estrada-Peña A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13:3200. 10.2741/3200 PubMed DOI
de la Fuente J., Torina A., Naranjo V., Caracappa S., Di Marco V., Alongi A., et al. . (2005). Infection with Anaplasma phagocytophilum in a seronegative patient in Sicily, Italy: case report. Ann. Clin. Microbiol. Antimicrob. 4:15. 10.1186/1476-0711-4-15 PubMed DOI PMC
de la Fuente J., Villar M., Cabezas-Cruz A., Estrada-Pe-a A., Ayllón N., Alberdi P. (2016b). Tick-host-pathogen interactions: conflict and cooperation. PLoS Pathog. 12:e1005488. 10.1371/journal.ppat.1005488 PubMed DOI PMC
de la Fuente J., Waterhouse R. M., Sonenshine D. E., Roe R. M., Ribeiro J. M., Sattelle D. B., et al. . (2016c). Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front. Cell. Infect. Microbiol. 6:103. 10.3389/fcimb.2016.00103 PubMed DOI PMC
Dunning H. J. C., Lin M., Madupu R., Crabtree J., Angiuoli S. V., Eisen J. A., et al. . (2006). Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2:e21. 10.1371/journal.pgen.0020021 PubMed DOI PMC
Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., et al. . (2014). Pfam: the protein families database. Nucleic. Acids. Res. 42, D222-D2230. 10.1093/nar/gkt1223 PubMed DOI PMC
Gaitán S., Tejero C., Ruiz-Amil M. (1983). Some comparative properties of pyruvate kinase in haematopoietic cells and erythrocytes from rainbow trout (Salmo gairdneri R). Comp. Biochem. Physiol. B 74, 801–805. 10.1016/0305-0491(83)90149-9 PubMed DOI
Grüning N. M., Du D., Keller M. A., Luisi B. F., Ralser M. (2014). Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol. 4:130232. 10.1098/rsob.130232 PubMed DOI PMC
Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7:10507. 10.1038/ncomms10507 PubMed DOI PMC
Hondalus M. K., Bardarov S., Russell R., Chan J., Jacobs W. R., Jr., Bloom B. R. (2000). Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898. 10.1128/IAI.68.5.2888-2898.2000 PubMed DOI PMC
Husnik F., Nikoh N., Koga R., Ross L., Duncan R. P., Fujie M., et al. . (2013). Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 1567–1578. 10.1016/j.cell.2013.05.040 PubMed DOI
Khajanchi B. K., Odeh E., Gao L., Jacobs M. B., Philipp M. T., Lin T., et al. . (2015). Phosphoenolpyruvate phosphotransferase system components modulate gene transcription and virulence of Borrelia burgdorferi. Infect. Immun. 84, 754–764. 10.1128/IAI.00917-15 PubMed DOI PMC
Kocan K. M., de la Fuente J., Cabezas-Cruz A. (2015). The genus Anaplasma: new challenges after reclassification. Rev. Sci. Tech. 34, 577–586. 10.20506/rst.34.2.2381 PubMed DOI
Kopáček P., Perner J. (2016). Vector Biology: Tyrosine degradation protects blood feeders from death via la grande bouffe. Curr. Biol. 26, R763–R765. 10.1016/j.cub.2016.06.068 PubMed DOI
Leitão-Gonçalves R., Carvalho-Santos Z., Francisco A. P., Fioreze G. T., Anjos M., Baltazar C., et al. . (2017). Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15:e2000862. 10.1371/journal.pbio.2000862 PubMed DOI PMC
Liu X., Lu R., Xia Y., Sun J. (2010). Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo. BMC Genomics. 11:722. 10.1186/1471-2164-11-722 PubMed DOI PMC
Madden T. L., Tatusov R. L., Zhang J. (1996). Applications of network BLAST server. Meth. Enzymol. 266, 131–141. 10.1016/S0076-6879(96)66011-X PubMed DOI
Méndez-Lucas A., Duarte J. A., Sunny N. E., Satapati S., He T., Fu X., et al. . (2013). PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J. Hepatol. 59, 105–113. 10.1016/j.jhep.2013.02.020 PubMed DOI PMC
Munderloh U. G., Jauron S. D., Fingerle V., Leitritz L., Hayes S. F., Hautman J. M., et al. . (1999). Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J. Clin. Microbiol. 37, 2518–2524. PubMed PMC
Munderloh U. G., Liu Y., Wang M., Chen C., Kurtti T. J. (1994). Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 80, 533–543. 10.2307/3283188 PubMed DOI
Nye C. K., Hanson R. W., Kalhan S. C. (2008). Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J. Biol. Chem. 283, 27565–27574. 10.1074/jbc.M804393200 PubMed DOI PMC
O'Callaghan D., Maskell D., Liew F. Y., Easmon C. S., Dougan G. (1988). Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect. Immun. 56, 419–423. PubMed PMC
Østergaard O., Follmann F., Olsen A. W., Heegaard N. H., Andersen P., Rosenkrands I. (2016). Quantitative protein profiling of Chlamydia trachomatis growth forms reveals defense strategies against tryptophan starvation. Mol. Cell. Proteomics 15, 3540–3550. 10.1074/mcp.M116.061986 PubMed DOI PMC
Olive A. J., Sassetti C. M. (2016). Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat. Rev. Microbiol. 14, 221–234. 10.1038/nrmicro.2016.12 PubMed DOI
Owen O. E., Kalhan S. C., Hanson R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409–30412. 10.1074/jbc.R200006200 PubMed DOI
Pfefferkorn E. R. (1984). Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl. Acad. Sci. U.S.A. 81, 908–912. 10.1073/pnas.81.3.908 PubMed DOI PMC
Postma P. W., Lengeler J. W., Jacobson G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543–594. PubMed PMC
Samanta D., Semenza G. L. (2016). Serine synthesis helps hypoxic cancer stem cells regulate redox. Cancer Res. 76, 6458–6462. 10.1158/0008-5472.CAN-16-1730 PubMed DOI
Sinclair S. H., Garcia-Garcia J. C., Dumler J. S. (2015). Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front. Microbiol. 6:55. 10.3389/fmicb.2015.00055 PubMed DOI PMC
Sinclair S. H., Rennoll-Bankert K. E., Dumler J. S. (2014). Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front. Genet. 5:274. 10.3389/fgene.2014.00274 PubMed DOI PMC
Stark R., Pasquel F., Turcu A., Pongratz R. L., Roden M., Cline G. W., et al. . (2009). Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J. Biol. Chem. 284, 26578–26590. 10.1074/jbc.M109.011775 PubMed DOI PMC
Sterkel M., Perdomo H. D., Guizzo M. G., Barletta A. B., Nunes R. D., Dias F. A., et al. . (2016). Tyrosine detoxification is an essential trait in the life history of blood-feeding Arthropods. Curr. Biol. 26, 2188–2193. 10.1016/j.cub.2016.06.025 PubMed DOI
Stuen S., Granquist E. G., Silaghi C. (2013). Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3:31. 10.3389/fcimb.2013.00031 PubMed DOI PMC
Sunyakumthorn P., Petchampai N., Grasperge B. J., Kearney M. T., Sonenshine D. E., Macaluso K. R. (2013). Gene expression of tissue-specific molecules in ex vivo Dermacentor variabilis (Acari: Ixodidae) during rickettsial exposure. J. Med. Entomol. 50, 1089–1096. 10.1603/ME12162 PubMed DOI PMC
Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. . (2015). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics 14, 3154–3172. 10.1074/mcp.M115.051938 PubMed DOI PMC
Wang Q., Millet Y. A., Chao M. C., Sasabe J., Davis B. M., Waldor M. K. (2015). A genome-wide screen reveals that the vibrio cholerae phosphoenolpyruvate phosphotransferase system modulates virulence gene expression. Infect. Immun. 83, 3381–3395. 10.1128/IAI.00411-15 PubMed DOI PMC
Wood H., Fehlner-Gardner C., Berry J., Fischer E., Graham B., Hackstadt T., et al. . (2003). Regulation of tryptophan synthase gene expression in Chlamydia trachomatis. Mol. Microbiol. 49, 1347–1359. 10.1046/j.1365-2958.2003.03638.x PubMed DOI
Yang J., Kalhan S. C., Hanson R. W. (2009). What is the metabolic role of phosphoenolpyruvate carboxykinase? J. Biol. Chem. 284, 27025–27029. 10.1074/jbc.R109.040543 PubMed DOI PMC
Yang M., Vousden K. H. (2016). Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662. 10.1038/nrc.2016.81 PubMed DOI
Zhang Y. J., Rubin E. J. (2013). Feast or famine: the host-pathogen battle over amino acids. Cell. Microbiol. 15, 1079–1087. 10.1111/cmi.12140 PubMed DOI PMC
Zhang Y. J., Reddy M. C., Ioerger T. R., Rothchild A. C., Dartois V., Schuster B. M., et al. . (2013). Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308. 10.1016/j.cell.2013.10.045 PubMed DOI PMC