Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
UID 86423
National Research Foundation
PubMed
28887734
DOI
10.1007/s12223-017-0546-3
PII: 10.1007/s12223-017-0546-3
Knihovny.cz E-resources
- MeSH
- Ethanol metabolism MeSH
- Fermentation MeSH
- Genes, Mating Type, Fungal MeSH
- Glucose metabolism MeSH
- Lignin metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- South Africa MeSH
- Names of Substances
- Ethanol MeSH
- Glucose MeSH
- Lignin MeSH
- lignocellulose MeSH Browser
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.
See more in PubMed
Yeast. 2014 Nov;31(11):421-30 PubMed
Nat Genet. 2005 Jan;37(1):77-83 PubMed
FEMS Microbiol Lett. 2003 Apr 25;221(2):249-55 PubMed
Nat Genet. 2005 Jan;37(1):13-4 PubMed
J Biol Chem. 2002 Sep 6;277(36):33075-80 PubMed
Biotechnol Bioeng. 2005 Nov 20;92(4):479-84 PubMed
Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412 PubMed
Appl Environ Microbiol. 2003 Jul;69(7):4076-86 PubMed
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21010-5 PubMed
Appl Microbiol Biotechnol. 2009 Nov;85(2):253-63 PubMed
New Phytol. 2011 Mar;189(4):923-37 PubMed
Appl Microbiol Biotechnol. 2004 Nov;66(1):10-26 PubMed
Sci Rep. 2016 Feb 22;6:21849 PubMed
Biotechnol Biofuels. 2013 Nov 29;6(1):167 PubMed
Bioessays. 1999 Sep;21(9):761-7 PubMed
FEMS Microbiol Rev. 2001 Jan;25(1):15-37 PubMed
N Biotechnol. 2012 Feb 15;29(3):379-86 PubMed
Curr Opin Cell Biol. 2010 Dec;22(6):809-15 PubMed
PLoS Genet. 2008 Oct;4(10):e1000223 PubMed
Appl Environ Microbiol. 2011 Apr;77(7):2292-302 PubMed
Appl Microbiol Biotechnol. 2010 Jul;87(3):829-45 PubMed
Nature. 2009 Mar 19;458(7236):337-41 PubMed
J Biotechnol. 2009 Oct 12;144(1):23-30 PubMed
FEMS Yeast Res. 2009 Dec;9(8):1148-60 PubMed
PLoS One. 2011;6(9):e25147 PubMed
J Appl Microbiol. 2010 Jul;109(1):13-24 PubMed
Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34 PubMed
Mol Biol Evol. 2012 Jul;29(7):1781-9 PubMed
Trends Biotechnol. 1999 Jun;17(6):237-44 PubMed
FEMS Microbiol Rev. 2007 Sep;31(5):535-69 PubMed
Nat Biotechnol. 2008 Feb;26(2):169-72 PubMed
Biotechnol Biofuels. 2013 Nov 29;6(1):168 PubMed
Appl Environ Microbiol. 2003 Mar;69(3):1499-503 PubMed
Appl Microbiol Biotechnol. 2011 May;90(3):809-25 PubMed
Bioresour Technol. 2016 Jan;199:103-112 PubMed
Appl Microbiol Biotechnol. 2014 Nov;98(22):9483-98 PubMed
Biochem J. 1992 Dec 15;288 ( Pt 3):859-64 PubMed
PLoS One. 2012;7(11):e49640 PubMed
Biotechnol Biofuels. 2013 Jan 28;6(1):16 PubMed
Biotechnol Prog. 1999 Oct 1;15(5):777-793 PubMed
FEMS Yeast Res. 2008 Nov;8(7):1155-63 PubMed
Interface Focus. 2011 Apr 6;1(2):196-211 PubMed
Biotechnol Biofuels. 2016 Jan 13;9:9 PubMed
FEMS Microbiol Lett. 1995 Dec 15;134(2-3):121-7 PubMed
Biotechnol Biofuels. 2015 Feb 26;8:32 PubMed
Enzyme Microb Technol. 2015 Dec;81:16-22 PubMed
Braz J Microbiol. 2012 Jan;43(1):157-66 PubMed
J Evol Biol. 2012 Jun;25(6):1020-38 PubMed
Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):319-27 PubMed
Appl Biochem Biotechnol. 2000 Spring;84-86:617-32 PubMed
Trends Genet. 2011 Aug;27(8):323-31 PubMed
Mol Biol Evol. 2014 Apr;31(4):872-88 PubMed
Cytogenet Genome Res. 2013;139(3):193-205 PubMed
J Ind Microbiol Biotechnol. 2012 Jan;39(1):73-80 PubMed
Mol Ecol. 2011 Apr;20(7):1401-13 PubMed
Adv Biochem Eng Biotechnol. 2007;108:121-45 PubMed
Appl Environ Microbiol. 2015 Sep;81(18):6166-76 PubMed
FEMS Microbiol Rev. 2014 Sep;38(5):947-95 PubMed