Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm

. 2018 Mar ; 63 (2) : 181-190. [epub] 20170914

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28905285

Grantová podpora
F.7-261/2009 University Grants Commission

Odkazy

PubMed 28905285
DOI 10.1007/s12223-017-0545-4
PII: 10.1007/s12223-017-0545-4
Knihovny.cz E-zdroje

Microorganisms develop biofilms on indwelling medical devices and are associated with biofilm-related infections, resulting in substantial morbidity and mortality. Therefore, to prevent and control biofilm-associated infections, the present study was designed to assess the anti-biofilm potential of postbiotics derived from probiotic organisms against most prevalent biofilm-forming Pseudomonas aeruginosa PAO1. Eighty lactic acid bacteria isolated from eight neonatal fecal samples possessed antibacterial activity against P. aeruginosa PAO1. Among these, only four lactic acid bacteria produced both bacteriocin and exopolysaccharides but only one isolate was found to maximally attenuate the P. aeruginosa PAO1 biofilm. More specifically, the phenotypic and probiotic characterization showed that the isolated lactic acid bacteria were gram positive, non-motile, and catalase and oxidase negative; tolerated acidic and alkaline pH; has bile salt concentration; showed 53% hydrophobicity; and was found to be non-hemolytic. Phylogenetically, the organism was found to be probiotic Lactobacillus fermentum with accession no. KT998657. Interestingly, pre-coating of a microtiter plate either with bacteriocin or with exopolysaccharides as well as their combination significantly (p < 0.05) reduced the number of viable cells forming biofilms to 41.7% compared with simultaneous coating of postbiotics that had 72.4% biofilm-forming viable cells as observed by flow cytometry and confocal laser scanning microscopy. Therefore, it can be anticipated that postbiotics as the natural biointerventions can be employed as the prophylactic agents for medical devices used to treat gastrointestinal and urinary tract infections.

Zobrazit více v PubMed

Int J Food Microbiol. 2001 Dec 4;71(1):1-20 PubMed

Biomed Microdevices. 2014 Jun;16(3):365-74 PubMed

J Dairy Sci. 2014 Dec;97(12 ):7334-43 PubMed

J Bacteriol. 2000 May;182(10):2675-9 PubMed

Indian J Med Res. 2011 Nov;134(5):664-71 PubMed

Indian J Med Res. 2011 Jul;134:22-5 PubMed

Gut Pathog. 2014 Jun 14;6:23 PubMed

Adv Food Nutr Res. 2009;56:1-15 PubMed

BMC Vet Res. 2016 Aug 05;12 (1):163 PubMed

Dig Dis Sci. 2008 Oct;53(10):2671-9 PubMed

Int J Oral Sci. 2011 Apr;3(2):55-65 PubMed

Trends Microbiol. 2005 Jan;13(1):20-6 PubMed

J Antimicrob Chemother. 2005 Aug;56(2):331-6 PubMed

Am J Clin Pathol. 1966 Apr;45(4):493-6 PubMed

Fitoterapia. 2013 Oct;90:73-8 PubMed

J Clin Microbiol. 1989 May;27(5):938-43 PubMed

Clin Perinatol. 2013 Mar;40(1):11-25 PubMed

J Dent Res. 2010 Mar;89(3):205-18 PubMed

Biochem Biophys Res Commun. 2009 Feb 6;379(2):324-9 PubMed

Interdiscip Perspect Infect Dis. 2011;2011:795219 PubMed

Annu Rev Microbiol. 1993;47:855-74 PubMed

Arch Microbiol. 2012 Jul;194(7):575-87 PubMed

Proc Natl Acad Sci U S A. 2007 May 1;104(18):7617-21 PubMed

Antimicrob Agents Chemother. 2011 Sep;55(9):4469-74 PubMed

AMB Express. 2012 Sep 10;2(1):48 PubMed

BMC Microbiol. 2013 Jul 26;13:174 PubMed

Pathog Dis. 2014 Nov;72(2):87-94 PubMed

FEMS Immunol Med Microbiol. 2010 Mar;58(2):237-43 PubMed

Bioresour Technol. 2011 Apr;102(7):4827-33 PubMed

Appl Environ Microbiol. 2003 Mar;69(3):1589-97 PubMed

J Theor Biol. 2008 Mar 7;251(1):24-34 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...