Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28912493
PubMed Central
PMC5599566
DOI
10.1038/s41598-017-09477-7
PII: 10.1038/s41598-017-09477-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A facile approach for the synthesis of magnetite microspheres with flower-like morphology is reported that proceeds via the reduction of iron(III) oxide under a hydrogen atmosphere. The ensuing magnetic catalyst is well characterized by XRD, FE-SEM, TEM, N2 adsorption-desorption isotherm, and Mössbauer spectroscopy and explored for a simple yet efficient transfer hydrogenation reduction of a variety of nitroarenes to respective anilines in good to excellent yields (up to 98%) employing hydrazine hydrate. The catalyst could be easily separated at the end of a reaction using an external magnet and can be recycled up to 10 times without any loss in catalytic activity.
See more in PubMed
Blaser HU, Steiner H, Studer M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem. 2009;1:210–221. doi: 10.1002/cctc.200900129. DOI
Downing RS, Kunkeler PJ, vanBekkum H. Catalytic syntheses of aromatic amines. Catal. Today. 1997;37:121–136. doi: 10.1016/S0920-5861(97)00005-9. DOI
Tafesh AM, Weiguny J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996;96:2035–2052. doi: 10.1021/cr950083f. PubMed DOI
Sorribes I, et al. Chemoselective transfer hydrogenation to nitroarenes mediated by cubane-type Mo3S4 cluster catalysts. Angew. Chem. Int. Ed. 2012;51:7794–7798. doi: 10.1002/anie.201202584. PubMed DOI
Wienhofer G, et al. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011;133:12875–12879. doi: 10.1021/ja2061038. PubMed DOI
Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science. 2006;313:332–334. doi: 10.1126/science.1128383. PubMed DOI
Cantillo D, Baghbanzadeh M, Kappe CO. In Situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem. Int. Ed. 2012;51:10190–10193. doi: 10.1002/anie.201205792. PubMed DOI
Corma A, Serna P, Garcia H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of alpha,beta-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. 2007;129:6358–6359. doi: 10.1021/ja0704131. PubMed DOI
Jagadeesh RV, et al. Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun. 2011;47:10972–10974. doi: 10.1039/c1cc13728j. PubMed DOI
Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH. Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green. Chem. 2014;16:1082–1086. doi: 10.1039/C3GC42042F. DOI
Li M, et al. Direct hydrogenation of nitroaromatics and one-pot amidation with carboxylic acids over platinum nanowires. Chem. Eur. J. 2011;17:2763–2768. doi: 10.1002/chem.201002801. PubMed DOI
Gawande MB, Luque R, Zboril R. The rise of magnetically recyclable nanocatalysts. ChemCatChem. 2014;6:3312–3313. doi: 10.1002/cctc.201402663. DOI
Wu H, Zhuo LM, He Q, Liao XP, Shi B. Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Appl. Catal. A. Gen. 2009;366:44–56. doi: 10.1016/j.apcata.2009.06.024. DOI
Amali AJ, Rana RK. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions. Green. Chem. 2009;11:1781–1786. doi: 10.1039/b916261p. DOI
Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites. Appl. Catal. A. Gen. 2004;265:135–139. doi: 10.1016/j.apcata.2004.01.009. DOI
Luo PF, et al. Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles. Catal. Sci. Technol. 2012;2:301–304. doi: 10.1039/C1CY00358E. DOI
Sharma U, et al. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chem. Eur. J. 2011;17:5903–5907. doi: 10.1002/chem.201003621. PubMed DOI
Vass A, Dudas J, Toth J, Varma RS. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. 2001;42:5347–5349. doi: 10.1016/S0040-4039(01)01002-4. DOI
Kim S, Kim E, Kim BM. Fe3O4 Nanoparticles: A conveniently reusable catalyst for the reduction of nitroarenes using hydrazine hydrate. Chem. Asian J. 2011;6:1921–1925. doi: 10.1002/asia.201100311. PubMed DOI
Berthold, H., Schotten, T. & Honig, H. Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis, 1607–1610 (2002).
Lin XB, et al. Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green. Chem. 2011;13:283–287. doi: 10.1039/C0GC00513D. DOI
Bolm C. A new iron age. Nat. Chem. 2009;1:420–420. doi: 10.1038/nchem.315. PubMed DOI
Czaplik WM, Mayer M, Jacobi von Wangelin A. Domino Iron Catalysis: Direct Aryl-Alkyl Cross-Coupling. Angew. Chem. Int. Ed. 2009;48:607–610. doi: 10.1002/anie.200804434. PubMed DOI
Junge K, Schroder K, Beller M. Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chem. Commun. 2011;47:4849–4859. doi: 10.1039/c0cc05733a. PubMed DOI
Kumar P, et al. Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@ CuZnO@ Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B: Environ. 2017;205:654–665. doi: 10.1016/j.apcatb.2016.11.060. DOI
Yang B, et al. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Research. 2016;9:1879–1890. doi: 10.1007/s12274-016-1080-3. DOI
Wang L, Feng X, Liu D, Yu Z. In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Science China Mater. 2016;59:191–199.
Jagadeesh RV, et al. Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI
Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI
Papadas IT, Fountoulaki S, Lykakis IN, Armatas GS. Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes. Chem. Eur. J. 2016;22:4600–4607. doi: 10.1002/chem.201504685. PubMed DOI
Cantillo D, Moghaddam MM, Kappe CO. Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals. J. Org. Chem. 2013;78:4530–4542. doi: 10.1021/jo400556g. PubMed DOI
Koukabi N, et al. Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. 2011;47:9230–9232. doi: 10.1039/c1cc12693h. PubMed DOI
Gawande MB, et al. Copper and related nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Rev. 2016;116(6):3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI
Gawande MB, et al. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI
Zeng TQ, et al. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green. Chem. 2010;12:570–573. doi: 10.1039/b920000b. DOI
Panwar V, Kumar P, Bansal A, Ray SS, Jain SL. PEGylated magnetic nanoparticles (PEG@Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via C H activation. Appl. Catal. A; Gen. 2015;498:25–31. doi: 10.1016/j.apcata.2015.03.018. DOI
Jang Y, et al. Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 2011;47:3601–3603. doi: 10.1039/c0cc04816j. PubMed DOI
Yoon, H., Ko, S. & Jang, J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem. Commun. 1468–1470 (2007). PubMed
Liu YP, et al. Magnetically Recoverable Nanoflake-Shaped Iron Oxide/Pt Heterogeneous Catalysts and Their Excellent Catalytic Performance in the Hydrogenation Reaction. Appl. Mater. Inter. 2014;6:1887–1892. doi: 10.1021/am404904p. PubMed DOI
Lu J, Tsai C. Reduction kinetics of hematite to magnetite under hydrothermal treatments. RSC Adv. 2015;5:17236–17244. doi: 10.1039/C4RA12389A. DOI
Zhou W, Tang K, Zeng S, Qi Y. Room temperature synthesis of rod-like FeC2O4· 2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnol. 2008;19:065602. doi: 10.1088/0957-4484/19/6/065602. PubMed DOI
Machala L, Tucek J, Zboril R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011;23:3255–3272. doi: 10.1021/cm200397g. DOI
Hai HT, Kura H, Takahashi M, Ogawa T. Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from gamma-Fe2O3 nanoparticles in organic solvent. J. Colloid Interf. Sci. 2010;341:194–199. doi: 10.1016/j.jcis.2009.09.041. PubMed DOI
Rubio-Zuazo J, Onandia L, Salas-Colera E, Muñoz-Noval A, Castro GR. Incommensurate growth of thin and ultrathin films of single-phase Fe3O4 (001) on SrTiO3 (001) J. Phys. Chem. C. 2015;119:1108–1112. doi: 10.1021/jp510615j. DOI
Doriguetto AC, et al. Characterization of a natural magnetite. Phys. Chem. Miner. 2003;30:249–255.
Datta KJ, et al. Micro-mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. J. Mater. Chem. A. 2016;4:596–604. doi: 10.1039/C5TA08386A. DOI
Blaser H-U. A golden boost to an old reaction. Science. 2006;313:312. doi: 10.1126/science.1131574. PubMed DOI
Kumar A, Kumar P, Paul S, Jain SL. Visible light assisted reduction of nitrobenzenes using Fe(bpy)3 + 2/rGO nanocomposite as photocatalyst. Appl. Surf. Sci. 2016;386:103–114. doi: 10.1016/j.apsusc.2016.05.139. DOI
Petkar DR, Kadu BS, Chikate RC. Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe–Ni bimetallic nanoparticles. RSC Adv. 2014;4:8004–8010. doi: 10.1039/c3ra45787g. DOI
El-Hout S, et al. A green chemical route for synthesis of graphene supported palladium nanoparticles: A highly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 2015;503:176–185. doi: 10.1016/j.apcata.2015.06.036. DOI
Zuo Y, et al. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition. Nanotechnol. 2016;27:145701. doi: 10.1088/0957-4484/27/14/145701. PubMed DOI
Li M, Chen G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale. 2013;5:11919–11927. doi: 10.1039/c3nr03521b. PubMed DOI
Pechoušek, J. et al. In AIP Conference Proceedings, Vol. 1489 pp. 186–193. Czech Republic, Olomouc.
Malina O, et al. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. RSC Adv. 2015;5:49719–49727. doi: 10.1039/C5RA07484C. DOI
Klencsár Z, Kuzmann E, Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI