Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28912493
PubMed Central
PMC5599566
DOI
10.1038/s41598-017-09477-7
PII: 10.1038/s41598-017-09477-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A facile approach for the synthesis of magnetite microspheres with flower-like morphology is reported that proceeds via the reduction of iron(III) oxide under a hydrogen atmosphere. The ensuing magnetic catalyst is well characterized by XRD, FE-SEM, TEM, N2 adsorption-desorption isotherm, and Mössbauer spectroscopy and explored for a simple yet efficient transfer hydrogenation reduction of a variety of nitroarenes to respective anilines in good to excellent yields (up to 98%) employing hydrazine hydrate. The catalyst could be easily separated at the end of a reaction using an external magnet and can be recycled up to 10 times without any loss in catalytic activity.
Zobrazit více v PubMed
Blaser HU, Steiner H, Studer M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem. 2009;1:210–221. doi: 10.1002/cctc.200900129. DOI
Downing RS, Kunkeler PJ, vanBekkum H. Catalytic syntheses of aromatic amines. Catal. Today. 1997;37:121–136. doi: 10.1016/S0920-5861(97)00005-9. DOI
Tafesh AM, Weiguny J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996;96:2035–2052. doi: 10.1021/cr950083f. PubMed DOI
Sorribes I, et al. Chemoselective transfer hydrogenation to nitroarenes mediated by cubane-type Mo3S4 cluster catalysts. Angew. Chem. Int. Ed. 2012;51:7794–7798. doi: 10.1002/anie.201202584. PubMed DOI
Wienhofer G, et al. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011;133:12875–12879. doi: 10.1021/ja2061038. PubMed DOI
Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science. 2006;313:332–334. doi: 10.1126/science.1128383. PubMed DOI
Cantillo D, Baghbanzadeh M, Kappe CO. In Situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem. Int. Ed. 2012;51:10190–10193. doi: 10.1002/anie.201205792. PubMed DOI
Corma A, Serna P, Garcia H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of alpha,beta-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. 2007;129:6358–6359. doi: 10.1021/ja0704131. PubMed DOI
Jagadeesh RV, et al. Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun. 2011;47:10972–10974. doi: 10.1039/c1cc13728j. PubMed DOI
Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH. Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green. Chem. 2014;16:1082–1086. doi: 10.1039/C3GC42042F. DOI
Li M, et al. Direct hydrogenation of nitroaromatics and one-pot amidation with carboxylic acids over platinum nanowires. Chem. Eur. J. 2011;17:2763–2768. doi: 10.1002/chem.201002801. PubMed DOI
Gawande MB, Luque R, Zboril R. The rise of magnetically recyclable nanocatalysts. ChemCatChem. 2014;6:3312–3313. doi: 10.1002/cctc.201402663. DOI
Wu H, Zhuo LM, He Q, Liao XP, Shi B. Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Appl. Catal. A. Gen. 2009;366:44–56. doi: 10.1016/j.apcata.2009.06.024. DOI
Amali AJ, Rana RK. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions. Green. Chem. 2009;11:1781–1786. doi: 10.1039/b916261p. DOI
Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites. Appl. Catal. A. Gen. 2004;265:135–139. doi: 10.1016/j.apcata.2004.01.009. DOI
Luo PF, et al. Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles. Catal. Sci. Technol. 2012;2:301–304. doi: 10.1039/C1CY00358E. DOI
Sharma U, et al. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chem. Eur. J. 2011;17:5903–5907. doi: 10.1002/chem.201003621. PubMed DOI
Vass A, Dudas J, Toth J, Varma RS. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. 2001;42:5347–5349. doi: 10.1016/S0040-4039(01)01002-4. DOI
Kim S, Kim E, Kim BM. Fe3O4 Nanoparticles: A conveniently reusable catalyst for the reduction of nitroarenes using hydrazine hydrate. Chem. Asian J. 2011;6:1921–1925. doi: 10.1002/asia.201100311. PubMed DOI
Berthold, H., Schotten, T. & Honig, H. Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis, 1607–1610 (2002).
Lin XB, et al. Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green. Chem. 2011;13:283–287. doi: 10.1039/C0GC00513D. DOI
Bolm C. A new iron age. Nat. Chem. 2009;1:420–420. doi: 10.1038/nchem.315. PubMed DOI
Czaplik WM, Mayer M, Jacobi von Wangelin A. Domino Iron Catalysis: Direct Aryl-Alkyl Cross-Coupling. Angew. Chem. Int. Ed. 2009;48:607–610. doi: 10.1002/anie.200804434. PubMed DOI
Junge K, Schroder K, Beller M. Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chem. Commun. 2011;47:4849–4859. doi: 10.1039/c0cc05733a. PubMed DOI
Kumar P, et al. Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@ CuZnO@ Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B: Environ. 2017;205:654–665. doi: 10.1016/j.apcatb.2016.11.060. DOI
Yang B, et al. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Research. 2016;9:1879–1890. doi: 10.1007/s12274-016-1080-3. DOI
Wang L, Feng X, Liu D, Yu Z. In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Science China Mater. 2016;59:191–199.
Jagadeesh RV, et al. Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI
Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI
Papadas IT, Fountoulaki S, Lykakis IN, Armatas GS. Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes. Chem. Eur. J. 2016;22:4600–4607. doi: 10.1002/chem.201504685. PubMed DOI
Cantillo D, Moghaddam MM, Kappe CO. Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals. J. Org. Chem. 2013;78:4530–4542. doi: 10.1021/jo400556g. PubMed DOI
Koukabi N, et al. Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. 2011;47:9230–9232. doi: 10.1039/c1cc12693h. PubMed DOI
Gawande MB, et al. Copper and related nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Rev. 2016;116(6):3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI
Gawande MB, et al. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI
Zeng TQ, et al. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green. Chem. 2010;12:570–573. doi: 10.1039/b920000b. DOI
Panwar V, Kumar P, Bansal A, Ray SS, Jain SL. PEGylated magnetic nanoparticles (PEG@Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via C H activation. Appl. Catal. A; Gen. 2015;498:25–31. doi: 10.1016/j.apcata.2015.03.018. DOI
Jang Y, et al. Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 2011;47:3601–3603. doi: 10.1039/c0cc04816j. PubMed DOI
Yoon, H., Ko, S. & Jang, J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem. Commun. 1468–1470 (2007). PubMed
Liu YP, et al. Magnetically Recoverable Nanoflake-Shaped Iron Oxide/Pt Heterogeneous Catalysts and Their Excellent Catalytic Performance in the Hydrogenation Reaction. Appl. Mater. Inter. 2014;6:1887–1892. doi: 10.1021/am404904p. PubMed DOI
Lu J, Tsai C. Reduction kinetics of hematite to magnetite under hydrothermal treatments. RSC Adv. 2015;5:17236–17244. doi: 10.1039/C4RA12389A. DOI
Zhou W, Tang K, Zeng S, Qi Y. Room temperature synthesis of rod-like FeC2O4· 2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnol. 2008;19:065602. doi: 10.1088/0957-4484/19/6/065602. PubMed DOI
Machala L, Tucek J, Zboril R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011;23:3255–3272. doi: 10.1021/cm200397g. DOI
Hai HT, Kura H, Takahashi M, Ogawa T. Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from gamma-Fe2O3 nanoparticles in organic solvent. J. Colloid Interf. Sci. 2010;341:194–199. doi: 10.1016/j.jcis.2009.09.041. PubMed DOI
Rubio-Zuazo J, Onandia L, Salas-Colera E, Muñoz-Noval A, Castro GR. Incommensurate growth of thin and ultrathin films of single-phase Fe3O4 (001) on SrTiO3 (001) J. Phys. Chem. C. 2015;119:1108–1112. doi: 10.1021/jp510615j. DOI
Doriguetto AC, et al. Characterization of a natural magnetite. Phys. Chem. Miner. 2003;30:249–255.
Datta KJ, et al. Micro-mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. J. Mater. Chem. A. 2016;4:596–604. doi: 10.1039/C5TA08386A. DOI
Blaser H-U. A golden boost to an old reaction. Science. 2006;313:312. doi: 10.1126/science.1131574. PubMed DOI
Kumar A, Kumar P, Paul S, Jain SL. Visible light assisted reduction of nitrobenzenes using Fe(bpy)3 + 2/rGO nanocomposite as photocatalyst. Appl. Surf. Sci. 2016;386:103–114. doi: 10.1016/j.apsusc.2016.05.139. DOI
Petkar DR, Kadu BS, Chikate RC. Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe–Ni bimetallic nanoparticles. RSC Adv. 2014;4:8004–8010. doi: 10.1039/c3ra45787g. DOI
El-Hout S, et al. A green chemical route for synthesis of graphene supported palladium nanoparticles: A highly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 2015;503:176–185. doi: 10.1016/j.apcata.2015.06.036. DOI
Zuo Y, et al. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition. Nanotechnol. 2016;27:145701. doi: 10.1088/0957-4484/27/14/145701. PubMed DOI
Li M, Chen G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale. 2013;5:11919–11927. doi: 10.1039/c3nr03521b. PubMed DOI
Pechoušek, J. et al. In AIP Conference Proceedings, Vol. 1489 pp. 186–193. Czech Republic, Olomouc.
Malina O, et al. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. RSC Adv. 2015;5:49719–49727. doi: 10.1039/C5RA07484C. DOI
Klencsár Z, Kuzmann E, Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI