• This record comes from PubMed

Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes

. 2017 Sep 14 ; 7 (1) : 11585. [epub] 20170914

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28912493
PubMed Central PMC5599566
DOI 10.1038/s41598-017-09477-7
PII: 10.1038/s41598-017-09477-7
Knihovny.cz E-resources

A facile approach for the synthesis of magnetite microspheres with flower-like morphology is reported that proceeds via the reduction of iron(III) oxide under a hydrogen atmosphere. The ensuing magnetic catalyst is well characterized by XRD, FE-SEM, TEM, N2 adsorption-desorption isotherm, and Mössbauer spectroscopy and explored for a simple yet efficient transfer hydrogenation reduction of a variety of nitroarenes to respective anilines in good to excellent yields (up to 98%) employing hydrazine hydrate. The catalyst could be easily separated at the end of a reaction using an external magnet and can be recycled up to 10 times without any loss in catalytic activity.

See more in PubMed

Blaser HU, Steiner H, Studer M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem. 2009;1:210–221. doi: 10.1002/cctc.200900129. DOI

Downing RS, Kunkeler PJ, vanBekkum H. Catalytic syntheses of aromatic amines. Catal. Today. 1997;37:121–136. doi: 10.1016/S0920-5861(97)00005-9. DOI

Tafesh AM, Weiguny J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996;96:2035–2052. doi: 10.1021/cr950083f. PubMed DOI

Sorribes I, et al. Chemoselective transfer hydrogenation to nitroarenes mediated by cubane-type Mo3S4 cluster catalysts. Angew. Chem. Int. Ed. 2012;51:7794–7798. doi: 10.1002/anie.201202584. PubMed DOI

Wienhofer G, et al. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011;133:12875–12879. doi: 10.1021/ja2061038. PubMed DOI

Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science. 2006;313:332–334. doi: 10.1126/science.1128383. PubMed DOI

Cantillo D, Baghbanzadeh M, Kappe CO. In Situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem. Int. Ed. 2012;51:10190–10193. doi: 10.1002/anie.201205792. PubMed DOI

Corma A, Serna P, Garcia H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of alpha,beta-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. 2007;129:6358–6359. doi: 10.1021/ja0704131. PubMed DOI

Jagadeesh RV, et al. Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun. 2011;47:10972–10974. doi: 10.1039/c1cc13728j. PubMed DOI

Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH. Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green. Chem. 2014;16:1082–1086. doi: 10.1039/C3GC42042F. DOI

Li M, et al. Direct hydrogenation of nitroaromatics and one-pot amidation with carboxylic acids over platinum nanowires. Chem. Eur. J. 2011;17:2763–2768. doi: 10.1002/chem.201002801. PubMed DOI

Gawande MB, Luque R, Zboril R. The rise of magnetically recyclable nanocatalysts. ChemCatChem. 2014;6:3312–3313. doi: 10.1002/cctc.201402663. DOI

Wu H, Zhuo LM, He Q, Liao XP, Shi B. Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Appl. Catal. A. Gen. 2009;366:44–56. doi: 10.1016/j.apcata.2009.06.024. DOI

Amali AJ, Rana RK. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions. Green. Chem. 2009;11:1781–1786. doi: 10.1039/b916261p. DOI

Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites. Appl. Catal. A. Gen. 2004;265:135–139. doi: 10.1016/j.apcata.2004.01.009. DOI

Luo PF, et al. Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles. Catal. Sci. Technol. 2012;2:301–304. doi: 10.1039/C1CY00358E. DOI

Sharma U, et al. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chem. Eur. J. 2011;17:5903–5907. doi: 10.1002/chem.201003621. PubMed DOI

Vass A, Dudas J, Toth J, Varma RS. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. 2001;42:5347–5349. doi: 10.1016/S0040-4039(01)01002-4. DOI

Kim S, Kim E, Kim BM. Fe3O4 Nanoparticles: A conveniently reusable catalyst for the reduction of nitroarenes using hydrazine hydrate. Chem. Asian J. 2011;6:1921–1925. doi: 10.1002/asia.201100311. PubMed DOI

Berthold, H., Schotten, T. & Honig, H. Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis, 1607–1610 (2002).

Lin XB, et al. Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green. Chem. 2011;13:283–287. doi: 10.1039/C0GC00513D. DOI

Bolm C. A new iron age. Nat. Chem. 2009;1:420–420. doi: 10.1038/nchem.315. PubMed DOI

Czaplik WM, Mayer M, Jacobi von Wangelin A. Domino Iron Catalysis: Direct Aryl-Alkyl Cross-Coupling. Angew. Chem. Int. Ed. 2009;48:607–610. doi: 10.1002/anie.200804434. PubMed DOI

Junge K, Schroder K, Beller M. Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chem. Commun. 2011;47:4849–4859. doi: 10.1039/c0cc05733a. PubMed DOI

Kumar P, et al. Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@ CuZnO@ Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B: Environ. 2017;205:654–665. doi: 10.1016/j.apcatb.2016.11.060. DOI

Yang B, et al. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Research. 2016;9:1879–1890. doi: 10.1007/s12274-016-1080-3. DOI

Wang L, Feng X, Liu D, Yu Z. In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Science China Mater. 2016;59:191–199.

Jagadeesh RV, et al. Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI

Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI

Papadas IT, Fountoulaki S, Lykakis IN, Armatas GS. Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes. Chem. Eur. J. 2016;22:4600–4607. doi: 10.1002/chem.201504685. PubMed DOI

Cantillo D, Moghaddam MM, Kappe CO. Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals. J. Org. Chem. 2013;78:4530–4542. doi: 10.1021/jo400556g. PubMed DOI

Koukabi N, et al. Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. 2011;47:9230–9232. doi: 10.1039/c1cc12693h. PubMed DOI

Gawande MB, et al. Copper and related nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Rev. 2016;116(6):3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI

Gawande MB, et al. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI

Zeng TQ, et al. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green. Chem. 2010;12:570–573. doi: 10.1039/b920000b. DOI

Panwar V, Kumar P, Bansal A, Ray SS, Jain SL. PEGylated magnetic nanoparticles (PEG@Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via C H activation. Appl. Catal. A; Gen. 2015;498:25–31. doi: 10.1016/j.apcata.2015.03.018. DOI

Jang Y, et al. Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 2011;47:3601–3603. doi: 10.1039/c0cc04816j. PubMed DOI

Yoon, H., Ko, S. & Jang, J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem. Commun. 1468–1470 (2007). PubMed

Liu YP, et al. Magnetically Recoverable Nanoflake-Shaped Iron Oxide/Pt Heterogeneous Catalysts and Their Excellent Catalytic Performance in the Hydrogenation Reaction. Appl. Mater. Inter. 2014;6:1887–1892. doi: 10.1021/am404904p. PubMed DOI

Lu J, Tsai C. Reduction kinetics of hematite to magnetite under hydrothermal treatments. RSC Adv. 2015;5:17236–17244. doi: 10.1039/C4RA12389A. DOI

Zhou W, Tang K, Zeng S, Qi Y. Room temperature synthesis of rod-like FeC2O4· 2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnol. 2008;19:065602. doi: 10.1088/0957-4484/19/6/065602. PubMed DOI

Machala L, Tucek J, Zboril R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011;23:3255–3272. doi: 10.1021/cm200397g. DOI

Hai HT, Kura H, Takahashi M, Ogawa T. Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from gamma-Fe2O3 nanoparticles in organic solvent. J. Colloid Interf. Sci. 2010;341:194–199. doi: 10.1016/j.jcis.2009.09.041. PubMed DOI

Rubio-Zuazo J, Onandia L, Salas-Colera E, Muñoz-Noval A, Castro GR. Incommensurate growth of thin and ultrathin films of single-phase Fe3O4 (001) on SrTiO3 (001) J. Phys. Chem. C. 2015;119:1108–1112. doi: 10.1021/jp510615j. DOI

Doriguetto AC, et al. Characterization of a natural magnetite. Phys. Chem. Miner. 2003;30:249–255.

Datta KJ, et al. Micro-mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. J. Mater. Chem. A. 2016;4:596–604. doi: 10.1039/C5TA08386A. DOI

Blaser H-U. A golden boost to an old reaction. Science. 2006;313:312. doi: 10.1126/science.1131574. PubMed DOI

Kumar A, Kumar P, Paul S, Jain SL. Visible light assisted reduction of nitrobenzenes using Fe(bpy)3 + 2/rGO nanocomposite as photocatalyst. Appl. Surf. Sci. 2016;386:103–114. doi: 10.1016/j.apsusc.2016.05.139. DOI

Petkar DR, Kadu BS, Chikate RC. Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe–Ni bimetallic nanoparticles. RSC Adv. 2014;4:8004–8010. doi: 10.1039/c3ra45787g. DOI

El-Hout S, et al. A green chemical route for synthesis of graphene supported palladium nanoparticles: A highly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 2015;503:176–185. doi: 10.1016/j.apcata.2015.06.036. DOI

Zuo Y, et al. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition. Nanotechnol. 2016;27:145701. doi: 10.1088/0957-4484/27/14/145701. PubMed DOI

Li M, Chen G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale. 2013;5:11919–11927. doi: 10.1039/c3nr03521b. PubMed DOI

Pechoušek, J. et al. In AIP Conference Proceedings, Vol. 1489 pp. 186–193. Czech Republic, Olomouc.

Malina O, et al. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. RSC Adv. 2015;5:49719–49727. doi: 10.1039/C5RA07484C. DOI

Klencsár Z, Kuzmann E, Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...