Recent Advances in the Nanocatalysts-assisted NaBH4 Reduction of Nitroaromatics in water
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
EPA999999
Intramural EPA - United States
PubMed
31032469
PubMed Central
PMC6483110
DOI
10.1021/acsomega.8b03051
Knihovny.cz E-zdroje
- Klíčová slova
- Hydrogenation, aminoaromatics, green transformations, nanocatalysts, nitroaromatics, reduction,
- Publikační typ
- časopisecké články MeSH
In view of the increasing applications of nanocatalysis in chemical transformations, this article illustrates recent advances on the use of nanocatalysts for an important reduction reaction, the hydrogenation of nitroaromatics to significant aminoaromatics with aqueous NaBH4 solution; the utility of mono- and multi-metal nanocatalysts with special emphasis on heterogeneous nanocatalysts are included. A progressive trend on the applicability of nanocatalysts is also incorporated with large scale application and their sustainable recyclization and reuse utilizing supported and magnetic nanocatalysts; representative methods for the synthesis of such reusable nanocatalysts are featured.
Zobrazit více v PubMed
Varma R. S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027.10.1039/c3gc42640h. DOI
Goswami A.; Rathi A. K.; Aparicio C.; Tomanec O.; Petr M.; Pocklanova R.; Gawande M. B.; Varma R. S.; Zboril R. In situ generation of Pd–Pt core–shell nanoparticles on reduced graphene oxide (Pd@Pt/rGO) using microwaves: applications in dehalogenation reactions and reduction of olefins. ACS Appl. Mater. Interfaces 2017, 9, 2815.10.1021/acsami.6b13138. PubMed DOI
Shokouhimehr M.; Lee J. E.; Han S. I.; Hyeon T. Magnetically recyclable hollow nanocomposite catalysts for heterogeneous reduction of nitroarenes and Suzuki reactions. Chem. Commun. 2013, 49, 4779.10.1039/c3cc41034j. PubMed DOI
Datta K. J.; Rathi A. K.; Gawande M. B.; Ranc V.; Zoppellaro G.; Varma R. S.; Zboril R. Base-free transfer hydrogenation of nitroarenes catalyzed by micro-mesoporous iron oxide. ChemCatChem 2016, 8, 2351.10.1002/cctc.201600296. DOI
Kabalka G. W.; Laila G. M. H.; Varma R. S. Selected reductions of conjugated nitroalkenes. Tetrahedron 1990, 46, 7443.10.1016/S0040-4020(01)89059-1. DOI
Shokouhimehr M.; Kim T.; Jun S. W.; Shin K.; Jang Y.; Kim B. H.; Kim J.; Hyeon T. Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Appl. Catal. A-Gen. 2014, 476, 133.10.1016/j.apcata.2014.02.029. DOI
Blaser H. U.; Malan C.; Pugin B.; Spindler F.; Steiner H.; Studer M. Selective hydrogenation for fine chemicals: recent trends and new developments. Adv. Synth. Catal. 2003, 345, 103.10.1002/adsc.200390000. DOI
Ayad M. M.; Amer W. A.; Kotp M. G. Magnetic polyaniline-chitosan nanocomposite decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Mol. Catal. 2017, 439, 72.10.1016/j.mcat.2017.06.023. DOI
Datta K. J.; Rathi A. K.; Kumar P.; Kaslik J.; Medrik I.; Ranc V.; Varma R. S.; Zboril R.; Gawande M. B. Synthesis of flower-like magnetite nanoassembly: application in the efficient reduction of nitroarenes. Sci. Rep. 2017, 7, 11585.10.1038/s41598-017-09477-7. PubMed DOI PMC
Rathi A. K.; Gawande M. B.; Ranc V.; Pechousek J.; Petr M.; Cepe K.; Varma R. S.; Zboril R. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pd nanocomposites. Catal. Sci. Technol. 2016, 6, 152.10.1039/C5CY00956A. DOI
Vass A.; Dudas J.; Toth J.; Varma R. S. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. 2001, 42, 5347.10.1016/S0040-4039(01)01002-4. DOI
Qin G. W.; Pei W.; Ma X.; Xu X.; Ren Y.; Sun W.; Zuo L. Enhanced catalytic activity of Pt nanomaterials: from monodisperse nanoparticles to self-organized nanoparticle-linked nanowires. J. Phys. Chem. C 2010, 114, 6909.10.1021/jp910864w. DOI
He S.; Niu H.; Zeng T.; Wang S.; Cai Y. A facile and efficient method for continuous reduction of nitroaromatic compounds through the cyclic transformation between Fe (II)-complexes and nano zero–valent iron. ChemistrySelect 2016, 1, 2821.10.1002/slct.201600407. DOI
Mahmoud A.; Tabor C. E.; El-Sayed M. A.; Ding Y.; Wang Z. L. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J. Am. Chem. Soc. 2008, 130, 4590.10.1021/ja710646t. PubMed DOI
Zhang J.; Chen G.; Chaker M.; Rosei F.; Ma D. Gold Nanoparticle Decorated Ceria Nanotubes with Significantly high Catalytic Activity for the Reduction of Nitrophenol and Mechanism Study. Appl. Catal. B 2013, 132-133, 107.10.1016/j.apcatb.2012.11.030. DOI
Narayanan R.; El-Sayed M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343.10.1021/nl0495256. DOI
Gelder E. A.; Jackson S. D.; Lok C. M. The hydrogenation of nitrobenzene to aniline: a new mechanism. Chem. Commun. 2005, 0, 522.10.1039/B411603H. PubMed DOI
Shokouhimehr M. Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 2015, 5, 534.10.3390/catal5020534. DOI
Ansar S. M.; Kitchens C. L. Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol. ACS Catal. 2016, 6, 5553.10.1021/acscatal.6b00635. DOI
Zeng H. C. Integrated Nanocatalysts. Acc. Chem. Res. 2013, 46, 226.10.1021/ar3001662. PubMed DOI
Shokouhimehr M.; Kim J. H.; Lee Y. S. Heterogeneous Heck reaction catalyzed by recyclable polymer-supported N-heterocyclic carbene-palladium complex. Synlett. 2006, 4, 0618.10.1055/s-2006-932467. DOI
Shokouhimehr M.; Shin K. Y.; Lee J. S.; Hackett M. J.; Jun S. W.; Oh M. H.; Jang J.; Hyeon T. Magnetically recyclable core–shell nanocatalysts for efficient heterogeneous oxidation of alcohols. J. Mater. Chem. A 2014, 2, 7593.10.1039/C4TA00032C. DOI
Murray C. B.; Kagan C. R.; Bawendi M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545.10.1146/annurev.matsci.30.1.545. DOI
Astruc D.; Lu F.; Aranzaes J. R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852.10.1002/anie.200500766. PubMed DOI
Choi K. H.; Shokouhimehr M.; Kang Y. S.; Chung D. Y.; Chung Y. H.; Ahn M.; Sung Y. E. Preparation and characterization of palladium nanoparticles supported on nickel hexacyanoferrate for fuel cell application. Bull. Korean Chem. Soc. 2013, 34, 1195.10.5012/bkcs.2013.34.4.1195. DOI
Han C.; Chen Z.; Zhang N.; Colmenares J. C.; Xu Y.-J. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 2015, 25, 221.10.1002/adfm.201402443. DOI
Shokouhimehr M.; Shahedi Asl M.; Mazinani B. Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction. Res. Chem. Intermed. 2018, 44, 1617.10.1007/s11164-017-3188-9. DOI
Herves P.; Perez-Lorenzo M.; Liz-Marzan L. M.; Dzubiella J.; Lu Y.; Ballauff M. Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem. Soc. Rev. 2012, 41, 5577.10.1039/c2cs35029g. PubMed DOI
Ghosh S. K.; Mandal M.; Kundu S.; Nath S.; Pal T. Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A-Gen. 2004, 268, 61.10.1016/j.apcata.2004.03.017. DOI
Hailes H. C. Reaction solvent selection: the potential of water as a solvent for organic transformations. Org. Process Res. Dev. 2007, 11, 114.10.1021/op060157x. DOI
Tang S.; Vongehr S.; Meng X. Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J. Mater. Chem. 2010, 20, 5436.10.1039/c0jm00456a. DOI
Lu Y.; Yuan J.; Polzer F.; Drechsler M.; Preussner J. In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core–shell microgels. ACS Nano 2010, 4, 7078.10.1021/nn102622d. PubMed DOI
Layek K.; Kantam M. L.; Shirai M.; Nishio-Hamane D.; Sasaki T.; Maheswaran H. Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 2012, 14, 3164.10.1039/c2gc35917k. DOI
Liu X.; Cheng H.; Cui P. Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride. Appl. Surf. Sci. 2014, 292, 695.10.1016/j.apsusc.2013.12.036. DOI
Rathore P. S.; Patidar R.; Shripathi T.; Thakore S. Magnetically separable core–shell iron oxide@nickel nanoparticles as high-performance recyclable catalysts for chemoselective reduction of nitroaromatics. Catal. Sci. Technol. 2015, 5, 286.10.1039/C4CY00673A. DOI
Farooqi Z. H.; Begum R.; Naseem K.; Rubab U.; Usman M.; Khan A.; Ijaz A. Fabrication of silver nanoparticles in pH responsive polymer microgel dispersion for catalytic reduction of nitrobenzene in aqueous medium. Russ. J. Phys. Chem. A 2016, 90, 2600.10.1134/S0036024416130239. DOI
Yanhe H.; Mengmeng Q.; Lei Z.; Sang Y.; Liu M.; Zhao T.; Niu J.; Zhang S. Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor. J. Hazard. Mater. 2018, 365, 448.10.1016/j.jhazmat.2018.11.036. PubMed DOI
Saikia H.; Borah B. J.; Bharali P. Room temperature reduction of nitroaromatics using Pd nanoparticles stabilized on nano-CeO2. ChemistrySelect 2017, 2, 10524.10.1002/slct.201702082. DOI
Richard W.; Evrard D.; Busson B.; Humbert C.; Dalstein L.; Tadjeddine A.; Gros P. The reduction of 4-nitrobenzene diazonium electrografted layer: an electrochemical study coupled to in situ sum-frequency generation spectroscopy. Electrochim. Acta 2018, 283, 1640.10.1016/j.electacta.2018.07.073. DOI
Iwase K.; Fujinami N.; Hashimoto K.; Kamiya K.; Nakanishi S. Cooperative electrocatalytic reduction of nitrobenzene to aniline in aqueous solution by copper-modified covalent triazine framework. Chem. Lett. 2017, 47, 304.10.1246/cl.171117. DOI
Zhang N.; Xu Y. J. Aggregation-and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core–shell strategy. Chem. Mater. 2013, 25, 1979.10.1021/cm400750c. DOI
Shah M.; Guo Q. X.; Fu Y. The colloidal synthesis of unsupported nickel-tin bimetallic nanoparticles with tunable composition that have high activity for the reduction of nitroarenes. Catal. Commun. 2015, 65, 85.10.1016/j.catcom.2015.02.026. DOI
Shang L.; Bian T.; Zhang B.; Zhang D.; Wu L.-Z.; Tung C.-H.; Yin Y.; Zhang T. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 2014, 126, 254.10.1002/ange.201306863. PubMed DOI
Guo M.; He J.; Li Y.; Ma S.; Sun X. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater. 2016, 310, 89.10.1016/j.jhazmat.2016.02.016. PubMed DOI
Gangula A.; Podila R.; Ramakrishna M.; Karanam L.; Janardhana C.; Rao A. M. Catalytic Reduction of 4-Nitrophenol using Biogenic Gold and Silver Nanoparticles Derived from Breynia rhamnoides. Langmuir 2011, 27, 15268.10.1021/la2034559. PubMed DOI
Pasricha R.; Bala T.; Biradar A. V.; Umbarkar S.; Sastry M. Synthesis of catalytically active porous platinum nanoparticles by transmetallation reaction and proposition of the mechanism. Small 2009, 5, 1467.10.1002/smll.200801863. PubMed DOI
Pradhan N.; Pal A.; Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 2001, 17, 1800.10.1021/la000862d. DOI
Kalekar A. M.; Sharma K. K. K.; Lehoux A.; Audonnet F.; Remita H.; Saha A.; Sharma G. K. Investigation into the catalytic activity of porous platinum nanostructures. Langmuir 2013, 29, 11431.10.1021/la401302p. PubMed DOI
Li A.; Luo Q.; Park S. J.; Cooks R. G. Synthesis and Catalytic Reactions of Nanoparticles formed by Electrospray Ionization of Coinage Metals. Angew. Chem., Int. Ed. 2014, 53, 3147.10.1002/anie.201309193. PubMed DOI
Pradhan N.; Pal A.; Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A 2002, 196, 247.10.1016/S0927-7757(01)01040-8. DOI
Dutta S.; Sarkar S.; Ray C.; Roy A.; Sahoo R.; Pal T. Mesoporous gold and palladium nanoleaves from liquid–liquid interface: enhanced catalytic activity of the palladium analogue toward hydrazine-assisted room-temperature 4-nitrophenol reduction. ACS Appl. Mater. Interface 2014, 6, 9134.10.1021/am503251r. PubMed DOI
Zhang W.; Tan F.; Wang W.; Qiu X.; Qiao X.; Chen J. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater. 2012, 217, 36.10.1016/j.jhazmat.2012.01.056. PubMed DOI
Imura Y.; Tsujimoto K.; Morita C.; Kawai T. Preparation and catalytic activity of Pd and bimetallic Pd–Ni nanowires. Langmuir 2014, 30, 5026.10.1021/la500811n. PubMed DOI
Mahmoud M. A.; Garlyyev B.; El-Sayed M. A. Determining the mechanism of solution metallic nanocatalysis with solid and hollow nanoparticles: homogeneous or heterogeneous. J. Phys. Chem. C 2013, 117, 21886.10.1021/jp4079234. DOI
Kaur R.; Giordano C.; Gradzielski M.; Mehta S. K. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chem. - Asian J. 2014, 9, 189.10.1002/asia.201300809. PubMed DOI
Kadama H. K.; Tilve S. G. Advancement in methodologies for reduction of nitroarenes. RSC Adv. 2015, 5, 83391.10.1039/C5RA10076C. DOI
Petkar D. R.; Kadu B. S.; Chikate R. C. Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe–Ni bimetallic nanoparticles. RSC Adv. 2014, 4, 8004.10.1039/c3ra45787g. DOI
Chu C.; Su Z. Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol. Langmuir 2014, 30, 15345.10.1021/la5042019. PubMed DOI
Saikia H.; Borah B. J.; Yamada Y.; Bharali P. Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. J. Colloid Interface Sci. 2017, 486, 46.10.1016/j.jcis.2016.09.056. PubMed DOI
Fu G.; Ding L.; Chen Y.; Lin J.; Tang Y.; Lu T. Facile water-based synthesis and catalytic properties of platinum–gold alloy nanocubes. CrystEngComm 2014, 16, 1606.10.1039/C3CE41848K. DOI
Ghosh S. K.; Mandal M.; Kundu S.; Nath S.; Pal T. Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal., A 2004, 268, 61.10.1016/j.apcata.2004.03.017. DOI
Chen H.; Zhou L.; Wen M.; Wu Q.; Wang C. A branched-dumbbell Pt/NiFe nanostructure and its high catalytic reduction activity for nitro-aromatic compounds. Mater. Res. Bull. 2014, 60, 322.10.1016/j.materresbull.2014.08.020. DOI
Choi K. H.; Shokouhimehr M.; Sung Y. E. Heterogeneous Suzuki cross-coupling reaction catalyzed by magnetically recyclable nanocatalyst. Bull. Korean Chem. Soc. 2013, 34, 193.10.5012/bkcs.2013.34.5.1477. DOI
Dong Z.; Le X.; Li X.; Zhang W.; Dong C.; Ma J. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B-Environ. 2014, 158, 129.10.1016/j.apcatb.2014.04.015. DOI
Tang J.; Shi Z.; Berry R. M.; Tam K. C. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind. Eng. Chem. Res. 2015, 54, 3299.10.1021/acs.iecr.5b00177. DOI
Wu Y.; Wen M.; Wu Q.; Fang H. Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 2014, 118, 6307.10.1021/jp412711b. DOI
Polshettiwar V.; Varma R. S. Green chemistry by nano-catalysis. Green Chem. 2010, 12, 743.10.1039/b921171c. DOI
Mirtaheri B.; Shokouhimehr M.; Beitollahi A. Synthesis of mesoporous tungsten oxide by template-assisted sol–gel method and its photocatalytic degradation activity. J. Sol-Gel Sci. Technol. 2017, 82, 148.10.1007/s10971-016-4289-4. DOI
Kim A.; Rafiaei S. M.; Abolhosseini S.; Shokouhimehr M. Palladium nanocatalysts confined in mesoporous silica for heterogeneous reduction of nitroaromatics. Energy Environ. Focus 2015, 4, 18.10.1166/eef.2015.1133. DOI
Shohouhimehr M.; Piao Y.; Kim J.; Jang Y.; Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew. Chem. Int. Ed. 2007, 46, 7039.10.1002/anie.200702386. PubMed DOI
Matsubu J. C.; Zhang S.; DeRita L.; Marinkovic N. S.; Chen J. G.; Graham G. W.; Pan X.; Christopher P. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 2017, 9, 120.10.1038/nchem.2607. PubMed DOI
Ye W.; Yu J.; Zhou Y.; Gao D.; Wang D.; Wang C.; Xue D. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B 2016, 181, 371.10.1016/j.apcatb.2015.08.013. DOI
Wang H.; Dong Z.; Na C. Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain. Chem. Eng. 2013, 1, 746.10.1021/sc400048m. DOI
Han J.; Fang P.; Jiang W.; Li L.; Guo R. Ag-nanoparticle-loaded mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir 2012, 28, 4768.10.1021/la204503b. PubMed DOI
Zhang Z.; Shao C.; Sun Y.; Mu J.; Zhang M.; Zhang P.; Guo Z.; Liang P.; Wang C.; Liu Y. Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 1387.10.1039/C1JM13421C. DOI
Yang M. Q.; Pan X.; Zhang N.; Xu Y.-J. A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm 2013, 15, 6819.10.1039/c3ce40694f. DOI
Zeng J.; Zhang Q.; Chen J.; Xia Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30.10.1021/nl903062e. PubMed DOI
Li X. H.; Wang X.; Antonietti M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170.10.1039/c2sc20289a. DOI
Chen Z.; Liu S.; Yang M. Q.; Xu Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Interfaces. 2013, 5, 4309.10.1021/am4010286. PubMed DOI
Zhang K.; Hong K.; Suh J. M.; Lee T. H.; Kwon O.; Shokouhimehr M.; Jang H. W. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Res. Chem. Intermed. 2018, 1–13. 10.1007/s11164-018-3621-8. DOI
Bhowmik T.; Kundu M. K.; Barman S. Ultra small gold nanoparticles–graphitic carbon nitride composite: an efficient catalyst for ultrafast reduction of 4-nitrophenol and removal of organic dyes from water. RSC Adv. 2015, 5, 38760.10.1039/C5RA04913J. DOI
Nasir Baig R. B.; Verma S.; Nadagouda M. N.; Varma R. S. Magnetic Fe@g-C3N4: a photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustain. Chem. Eng. 2016, 4, 1661.10.1021/acssuschemeng.5b01610. DOI
Sreedhar B.; Devi D. K.; Yada D. Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun. 2011, 12, 1009.10.1016/j.catcom.2011.02.027. DOI
Padil V. V. T.; Wacławek S.; Černík M.; Varma R. S. Tree gum-based renewable materials: sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018, 36, 1984.10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC
Chu C.; Su Z. Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol. Langmuir 2014, 30, 15345.10.1021/la5042019. PubMed DOI
Le X.; Dong Z.; Liu Y.; Jin Z.; Huy T.-D.; Le M.; Ma J. Palladium nanoparticles immobilized on core–shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. J. Mater. Chem. A 2014, 2, 19696.10.1039/C4TA04919E. DOI
Gawande M. B.; Branco P. S.; Varma R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371.10.1039/c3cs35480f. PubMed DOI
Nasir Baig R. B.; Varma R. S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem. 2013, 15, 398.10.1039/C2GC36455G. DOI
Patra A. K.; Vo N. T.; Kim D. Highly robust magnetically recoverable Ag/Fe2O3 nanocatalyst for chemoselective hydrogenation of nitroarenes in water. Appl. Catal., A 2017, 538, 148.10.1016/j.apcata.2017.03.007. DOI
Pelisson C. H.; Denicourt-Nowicki A.; Meriadec C.; Greneche J. M.; Roucoux A. Magnetically recoverable palladium(0) nanocomposite catalyst for hydrogenation reactions in water. ChemCatChem 2015, 7, 309.10.1002/cctc.201402761. DOI
An Q.; Yu M.; Zhang Y.; Ma W.; Guo J.; Wang C. Fe3O4@carbon microsphere supported Ag–Au bimetallic nanocrystals with the enhanced catalytic activity and selectivity for the reduction of nitroaromatic compounds. J. Phys. Chem. C 2012, 116, 22432.10.1021/jp307629m. DOI
Zhang P.; Li R.; Huang Y.; Chen Q. A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@C core–shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl. Mater. Interfaces 2014, 6, 2671.10.1021/am405167h. PubMed DOI
Du M.; Liu Q.; Huang C.; Qiu X. One-step synthesis of magnetically recyclable Co@BN core–shell nanocatalysts for catalytic reduction of nitroarenes. RSC Adv. 2017, 7, 35451.10.1039/C7RA04907B. DOI
Ayad M. M.; Amer W. A.; Kotp M. G.; Minisy I. M.; Rehab A. F.; Kopecky D.; Fitl P. Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis. RSC Adv. 2017, 7, 18553.10.1039/C7RA02575K. DOI
Zeng T.; Zhang X.; Niu H.; Ma Y.; Li W.; Cai Y. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl. Catal. B 2013, 134, 26.10.1016/j.apcatb.2012.12.037. DOI
Shokouhimehr M.; Hong K.; Lee T. H.; Moon C. W.; Hong S. P.; Zhang K.; Suh J. M.; Choi K. S.; Varma R. S.; Jang H. W. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018, 20, 3809.10.1039/C8GC01240G. DOI
Gawande M. B.; Goswami A.; Asefa T.; Guo H.; Biradar A. V.; Peng D. L.; Zboril R.; Varma R. S. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540.10.1039/C5CS00343A. PubMed DOI
Gawande M. B.; Guo H.; Rathi A. K.; Branco P. S.; Chen Y.; Varma R. S.; Peng D. L. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Adv. 2013, 3, 1050.10.1039/C2RA22143H. DOI
Yao T.; Cui T.; Fang X.; Fang C.; Wu J. Preparation of yolk–shell FexOy/Pd@mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol. Nanoscale 2013, 5, 5896.10.1039/c3nr01470c. PubMed DOI
Wang Y.; Biradar A. V.; Duncan C. T.; Asefa T. Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell: efficient and recyclable nanocatalysts. J. Mater. Chem. 2010, 20, 7834.10.1039/c0jm01093f. DOI
Dong Z.; Le X.; Dong C.; Zhang W.; Li X.; Ma J. Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B 2015, 162, 372.10.1016/j.apcatb.2014.07.009. DOI
Sharma R. K.; Dutta S.; Sharma S.; Zboril R.; Varma R. S.; Gawande M. B. Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184.10.1039/C6GC00864J. DOI