Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water

. 2019 Feb 21 ; 6 (1) : 6. [epub] 20190221

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30788636

Grantová podpora
2016M3D1A1027666 Future Material Discovery Program
2017R1A2B3009135 Basic Science Research Program

Odkazy

PubMed 30788636
PubMed Central PMC6382917
DOI 10.1186/s40580-019-0176-3
PII: 10.1186/s40580-019-0176-3
Knihovny.cz E-zdroje

A low-cost nanocomposite catalyst containing copper oxide (CuO) nanoparticles (NPs) on graphene oxide (GO) was fabricated by a facile hydrothermal self-assembly process. The segregated CuO NPs and GO exhibited negligible catalytic activities for the reduction of nitroaromatics. However, their hybrid composite accomplished facile reduction with high conversions for several substituted nitroaromatics in aqueous NaBH4 solution; synergetic coupling effect of CuO NPs with GO in the nanocomposite catalyst provided excellent catalytic activity. The nanocomposite catalyst could be separated from the reaction mixture and recycled consecutively.

Zobrazit více v PubMed

Zeng T, Niu HY, Ma YR, Li WH, Cai YQ. Appl. Catal. B-Environ. 2013;134:26. doi: 10.1016/j.apcatb.2012.12.037. DOI

Shokouhimehr M, Lee JE, Han SI, Hyeon T. Chem. Commun. 2013;49:4779. doi: 10.1039/c3cc41034j. PubMed DOI

Shokouhimehr M, Kim T, Jun SW, Shin K, Jang Y, Kim BH, Kim J, Hyeon T. Appl. Catal. A Gen. 2014;476:133. doi: 10.1016/j.apcata.2014.02.029. DOI

Gawande MB, Bonifácio VDB, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013;42:5522. doi: 10.1039/c3cs60025d. PubMed DOI

Choi KH, Shokouhimehr M, Kang YS, Chung DY, Chung YH, Ahn M, Sung YE. Bull. Korean Chem. Soc. 2013;34:1195. doi: 10.5012/bkcs.2013.34.4.1195. DOI

Polshettiwar V, Varma RS. Green Chem. 2010;12:743. doi: 10.1039/b921171c. DOI

Shokouhimehr M, Shahedi Asl M, Mazinani B. Res. Chem. Intermed. 2018;44:1617. doi: 10.1007/s11164-017-3188-9. DOI

Varma RS. Curr. Opin. Chem. Eng. 2012;1:123. doi: 10.1016/j.coche.2011.12.002. DOI

Virkutyte J, Varma RS. Chem. Sci. 2011;2:837. doi: 10.1039/C0SC00338G. DOI

Zhang K, Suh JM, Choi JW, Jang HW, Shokouhimehr M, Varma RS. ACS Omega. 2019;4:483. doi: 10.1021/acsomega.8b03051. PubMed DOI PMC

Hu Y, Tao K, Wu C, Zhou C, Yin H, Zhou S. J. Phys. Chem. C. 2013;117:8974. doi: 10.1021/jp3110375. DOI

Shokouhimehr M, Kim JH, Lee YS. Synlett. 2006;04:618.

Hagen J. Industrial catalysis: a practical approach. Hoboken: Wiley-VCH; 2006.

Shokouhimehr M. Catalysts. 2015;5:534. doi: 10.3390/catal5020534. DOI

Nasir Baig RB, Varma RS. Green Chem. 2013;15:398. doi: 10.1039/C2GC36455G. DOI

Verho O, Gustaffson KPJ, Nagendiran A, Tai CW, Backvall JE. ChemCatChem. 2014;6:3153. doi: 10.1002/cctc.201402488. DOI

Lu YM, Zhu HZ, Li WG, Hu B, Yu SH. J. Mater. Chem. A. 2013;1:3783. doi: 10.1039/c3ta00159h. DOI

Kuroda K, Ishida T, Haruta M. J. Mol. Catal. A. 2009;298:7. doi: 10.1016/j.molcata.2008.09.009. DOI

Dong Z, Le X, Li X, Zhang W, Dong C, Ma J. Appl. Catal. B. 2014;158:129. doi: 10.1016/j.apcatb.2014.04.015. DOI

Dong Z, Le X, Dong C, Zhang W, Li X, Ma J. Appl. Catal. B. 2015;162:372. doi: 10.1016/j.apcatb.2014.07.009. DOI

Kim A, Abdolhosseini S, Rafiaei SM, Shokouhimehr M. Energy Environ Focus. 2015;4:18. doi: 10.1166/eef.2015.1133. DOI

Lee I, Joo JB, Shokouhimehr M. Chin. J. Catal. 2015;36:1799. doi: 10.1016/S1872-2067(15)60971-8. DOI

He S, Niu H, Zeng T, Wang S, Cai Y. ChemistrySelect. 2016;1:2821. doi: 10.1002/slct.201600407. DOI

Karthik M, Suresh P. ChemistrySelect. 2017;2:6916. doi: 10.1002/slct.201701314. DOI

Wu YG, Wen M, Wu QS, Fang H. J. Phys. Chem. C. 2014;118:6307. doi: 10.1021/jp412711b. DOI

Tang B, Song WC, Yang EC, Zhao XJ. RSC Adv. 2017;7:1531. doi: 10.1039/C6RA26699A. DOI

Zhang N, Xu YJ. Chem. Mater. 2013;25:1979. doi: 10.1021/cm400750c. DOI

Kadam RG, Rathi AK, Zboril R, Varma RS, Gawande MB, Jayaram RV. ChemPlusChem. 2015;82:467. doi: 10.1002/cplu.201600611. PubMed DOI

Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. J. Am. Chem. Soc. 2012;134:9082. doi: 10.1021/ja3030565. PubMed DOI

Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater. 2011;10:780. doi: 10.1038/nmat3087. PubMed DOI

Shi J. Chem. Rev. 2013;113:2139. doi: 10.1021/cr3002752. PubMed DOI

El-Hout SI, El-Sheikh SM, Hassan HM, Harraz FA, Ibrahim IA, El-Sharkawy EA. Appl. Catal. A Gen. 2015;503:176. doi: 10.1016/j.apcata.2015.06.036. DOI

Cheng Y, Fan Y, Pei Y, Qiao M. Catal. Sci. Technol. 2015;5:3903. doi: 10.1039/C5CY00630A. DOI

Ma B, Wang Y, Tong X, Guo X, Zheng Z, Guo X. Catal. Sci. Technol. 2017;7:2805.

Goswami A, Rathi AK, Aparicio C, Tomanec O, Petr M, Pocklanova R, Gawande MB, Varma RS, Zboril R, Appl ACS. Mater. Interfaces. 2017;9:2815. doi: 10.1021/acsami.6b13138. PubMed DOI

Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Beams R, Cançado LG, Novotny L. J. Phys. Condens. Mat. 2015;27:083002. doi: 10.1088/0953-8984/27/8/083002. PubMed DOI

Sarkar C, Dolui SK. RSC Adv. 2015;5:60763. doi: 10.1039/C5RA10551J. DOI

Choi KH, Shokouhimehr M, Sung YE. Bull. Korean Chem. Soc. 2013;34:1477. doi: 10.5012/bkcs.2013.34.5.1477. DOI

Zhang K, Hong K, Suh JM, Lee TH, Kwon O, Shokouhimehr M, Jang HW. Res. Chem. Intermed. 2019;45:599. doi: 10.1007/s11164-018-3621-8. DOI

Shokouhimehr M, Hong K, Lee TH, Moon CW, Hong S-P, Zhang K, Suh JM, Choi KS, Varma RS, Jang HW. Green Chem. 2018;40:3809. doi: 10.1039/C8GC01240G. DOI

Rafiaei SM, Kim A, Shokouhimehr M. Nanosci. Nanotech. Lett. 2014;6:309. doi: 10.1166/nnl.2014.1760. DOI

Shokouhimehr M, Shin KY, Lee JS, Hackett MJ, Jun SW, Oh MH, Jang J, Hyeon T. J. Mater. Chem. A. 2014;2:7593. doi: 10.1039/C4TA00032C. DOI

Laali KK, Shokouhimehr M. Curr. Org. Chem. 2009;6:193.

Moon CW, Park J, Hong SP, Sohn W, Andoshe DM, Shokouhimehr M, Jang HW. RSC Adv. 2018;8:18442. doi: 10.1039/C8RA03523G. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...