Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016M3D1A1027666
Future Material Discovery Program
2017R1A2B3009135
Basic Science Research Program
PubMed
30788636
PubMed Central
PMC6382917
DOI
10.1186/s40580-019-0176-3
PII: 10.1186/s40580-019-0176-3
Knihovny.cz E-zdroje
- Klíčová slova
- Copper oxide, Graphene oxide, Hydrogenation, Hydrothermal, Synergistic effect,
- Publikační typ
- časopisecké články MeSH
A low-cost nanocomposite catalyst containing copper oxide (CuO) nanoparticles (NPs) on graphene oxide (GO) was fabricated by a facile hydrothermal self-assembly process. The segregated CuO NPs and GO exhibited negligible catalytic activities for the reduction of nitroaromatics. However, their hybrid composite accomplished facile reduction with high conversions for several substituted nitroaromatics in aqueous NaBH4 solution; synergetic coupling effect of CuO NPs with GO in the nanocomposite catalyst provided excellent catalytic activity. The nanocomposite catalyst could be separated from the reaction mixture and recycled consecutively.
Zobrazit více v PubMed
Zeng T, Niu HY, Ma YR, Li WH, Cai YQ. Appl. Catal. B-Environ. 2013;134:26. doi: 10.1016/j.apcatb.2012.12.037. DOI
Shokouhimehr M, Lee JE, Han SI, Hyeon T. Chem. Commun. 2013;49:4779. doi: 10.1039/c3cc41034j. PubMed DOI
Shokouhimehr M, Kim T, Jun SW, Shin K, Jang Y, Kim BH, Kim J, Hyeon T. Appl. Catal. A Gen. 2014;476:133. doi: 10.1016/j.apcata.2014.02.029. DOI
Gawande MB, Bonifácio VDB, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013;42:5522. doi: 10.1039/c3cs60025d. PubMed DOI
Choi KH, Shokouhimehr M, Kang YS, Chung DY, Chung YH, Ahn M, Sung YE. Bull. Korean Chem. Soc. 2013;34:1195. doi: 10.5012/bkcs.2013.34.4.1195. DOI
Polshettiwar V, Varma RS. Green Chem. 2010;12:743. doi: 10.1039/b921171c. DOI
Shokouhimehr M, Shahedi Asl M, Mazinani B. Res. Chem. Intermed. 2018;44:1617. doi: 10.1007/s11164-017-3188-9. DOI
Varma RS. Curr. Opin. Chem. Eng. 2012;1:123. doi: 10.1016/j.coche.2011.12.002. DOI
Virkutyte J, Varma RS. Chem. Sci. 2011;2:837. doi: 10.1039/C0SC00338G. DOI
Zhang K, Suh JM, Choi JW, Jang HW, Shokouhimehr M, Varma RS. ACS Omega. 2019;4:483. doi: 10.1021/acsomega.8b03051. PubMed DOI PMC
Hu Y, Tao K, Wu C, Zhou C, Yin H, Zhou S. J. Phys. Chem. C. 2013;117:8974. doi: 10.1021/jp3110375. DOI
Shokouhimehr M, Kim JH, Lee YS. Synlett. 2006;04:618.
Hagen J. Industrial catalysis: a practical approach. Hoboken: Wiley-VCH; 2006.
Shokouhimehr M. Catalysts. 2015;5:534. doi: 10.3390/catal5020534. DOI
Nasir Baig RB, Varma RS. Green Chem. 2013;15:398. doi: 10.1039/C2GC36455G. DOI
Verho O, Gustaffson KPJ, Nagendiran A, Tai CW, Backvall JE. ChemCatChem. 2014;6:3153. doi: 10.1002/cctc.201402488. DOI
Lu YM, Zhu HZ, Li WG, Hu B, Yu SH. J. Mater. Chem. A. 2013;1:3783. doi: 10.1039/c3ta00159h. DOI
Kuroda K, Ishida T, Haruta M. J. Mol. Catal. A. 2009;298:7. doi: 10.1016/j.molcata.2008.09.009. DOI
Dong Z, Le X, Li X, Zhang W, Dong C, Ma J. Appl. Catal. B. 2014;158:129. doi: 10.1016/j.apcatb.2014.04.015. DOI
Dong Z, Le X, Dong C, Zhang W, Li X, Ma J. Appl. Catal. B. 2015;162:372. doi: 10.1016/j.apcatb.2014.07.009. DOI
Kim A, Abdolhosseini S, Rafiaei SM, Shokouhimehr M. Energy Environ Focus. 2015;4:18. doi: 10.1166/eef.2015.1133. DOI
Lee I, Joo JB, Shokouhimehr M. Chin. J. Catal. 2015;36:1799. doi: 10.1016/S1872-2067(15)60971-8. DOI
He S, Niu H, Zeng T, Wang S, Cai Y. ChemistrySelect. 2016;1:2821. doi: 10.1002/slct.201600407. DOI
Karthik M, Suresh P. ChemistrySelect. 2017;2:6916. doi: 10.1002/slct.201701314. DOI
Wu YG, Wen M, Wu QS, Fang H. J. Phys. Chem. C. 2014;118:6307. doi: 10.1021/jp412711b. DOI
Tang B, Song WC, Yang EC, Zhao XJ. RSC Adv. 2017;7:1531. doi: 10.1039/C6RA26699A. DOI
Zhang N, Xu YJ. Chem. Mater. 2013;25:1979. doi: 10.1021/cm400750c. DOI
Kadam RG, Rathi AK, Zboril R, Varma RS, Gawande MB, Jayaram RV. ChemPlusChem. 2015;82:467. doi: 10.1002/cplu.201600611. PubMed DOI
Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. J. Am. Chem. Soc. 2012;134:9082. doi: 10.1021/ja3030565. PubMed DOI
Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater. 2011;10:780. doi: 10.1038/nmat3087. PubMed DOI
Shi J. Chem. Rev. 2013;113:2139. doi: 10.1021/cr3002752. PubMed DOI
El-Hout SI, El-Sheikh SM, Hassan HM, Harraz FA, Ibrahim IA, El-Sharkawy EA. Appl. Catal. A Gen. 2015;503:176. doi: 10.1016/j.apcata.2015.06.036. DOI
Cheng Y, Fan Y, Pei Y, Qiao M. Catal. Sci. Technol. 2015;5:3903. doi: 10.1039/C5CY00630A. DOI
Ma B, Wang Y, Tong X, Guo X, Zheng Z, Guo X. Catal. Sci. Technol. 2017;7:2805.
Goswami A, Rathi AK, Aparicio C, Tomanec O, Petr M, Pocklanova R, Gawande MB, Varma RS, Zboril R, Appl ACS. Mater. Interfaces. 2017;9:2815. doi: 10.1021/acsami.6b13138. PubMed DOI
Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Beams R, Cançado LG, Novotny L. J. Phys. Condens. Mat. 2015;27:083002. doi: 10.1088/0953-8984/27/8/083002. PubMed DOI
Sarkar C, Dolui SK. RSC Adv. 2015;5:60763. doi: 10.1039/C5RA10551J. DOI
Choi KH, Shokouhimehr M, Sung YE. Bull. Korean Chem. Soc. 2013;34:1477. doi: 10.5012/bkcs.2013.34.5.1477. DOI
Zhang K, Hong K, Suh JM, Lee TH, Kwon O, Shokouhimehr M, Jang HW. Res. Chem. Intermed. 2019;45:599. doi: 10.1007/s11164-018-3621-8. DOI
Shokouhimehr M, Hong K, Lee TH, Moon CW, Hong S-P, Zhang K, Suh JM, Choi KS, Varma RS, Jang HW. Green Chem. 2018;40:3809. doi: 10.1039/C8GC01240G. DOI
Rafiaei SM, Kim A, Shokouhimehr M. Nanosci. Nanotech. Lett. 2014;6:309. doi: 10.1166/nnl.2014.1760. DOI
Shokouhimehr M, Shin KY, Lee JS, Hackett MJ, Jun SW, Oh MH, Jang J, Hyeon T. J. Mater. Chem. A. 2014;2:7593. doi: 10.1039/C4TA00032C. DOI
Laali KK, Shokouhimehr M. Curr. Org. Chem. 2009;6:193.
Moon CW, Park J, Hong SP, Sohn W, Andoshe DM, Shokouhimehr M, Jang HW. RSC Adv. 2018;8:18442. doi: 10.1039/C8RA03523G. PubMed DOI PMC