• This record comes from PubMed

Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries

. 2019 Sep 19 ; 9 (1) : 13573. [epub] 20190919

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
2E29400 Korea Institute of Science and Technology (KIST)
2016M3D1A1027666 Seoul National University
2017R1A2B3009135 Seoul National University

Links

PubMed 31537878
PubMed Central PMC6753128
DOI 10.1038/s41598-019-50080-9
PII: 10.1038/s41598-019-50080-9
Knihovny.cz E-resources

Aluminum-ion batteries (AIBs) are regarded as promising candidates for post-lithium-ion batteries due to their lack of flammability and electrochemical performance comparable to other metal-ion batteries. The lack of suitable cathode materials, however, has hindered the development of high-performing AIBs. Sulfur is a cost-efficient material, having distinguished electrochemical properties, and is considered an attractive cathode material for AIBs. Several pioneering reports have shown that aluminum-sulfur batteries (ASBs) exhibit superior electrochemical capacity over other cathode materials for AIBs. However, a rapid decay in the capacity is a huge barrier for their practical applications. Here, we have demonstrated systematically for the first time that the two-dimensional layered materials (e.g. MoS2, WS2, and BN) can serve as fixers of S and sulfide compounds during repeated charge/discharge processes; BN/S/C displays the highest capacity of 532 mAh g-1 (at a current density of 100 mA g-1) compared with the current state-of-the-art cathode material for AIBs. Further, we could improve the life-span of ASBs to an unprecedented 300 cycles with a high Coulombic efficiency of 94.3%; discharge plateaus at ~1.15 V vs. AlCl4-/Al was clearly observed during repeated charge/discharge cycling. We believe that this work opens up a new method for achieving high-performing ASBs.

See more in PubMed

Zhang Y, Liu S, Ji Y, Ma J, Yu H. Emerging nonaqueous aluminum‐ion batteries: challenges, status, and perspectives. Adv. Mater. 2018;30:1706310. doi: 10.1002/adma.201706310. PubMed DOI

Cai T, et al. Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energ. Environ. Sci. 2018;11:2341–2347. doi: 10.1039/C8EE00822A. DOI

Zhang K, Lee TH, Jang HW, Shokouhimehr M, Choi J-W. A hybrid energy storage mechanism of zinc hexacyanocobaltate-based metal-organic framework endowing stationary and high-performance lithium-ion storage. Electron. Mater. Lett. 2019;15:444–453. doi: 10.1007/s13391-019-00146-7. DOI

Zhang K, Varma RS, Jang HW, Choi JW, Shokouhimehr M. Iron hexacyanocobaltate metal-organic framework: highly reversible and stationary electrode material with rich borders for lithium-ion batteries. J. Alloy Compd. 2019;791:911–917. doi: 10.1016/j.jallcom.2019.03.379. DOI

Zhang K, et al. Layered metal-organic framework based on tetracycanonickelate as a cathode material for in situ Li-ion storage. RSC Adv. 2019;9:21363–21370. doi: 10.1039/C9RA03975A. PubMed DOI PMC

Lin M-C, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:324. doi: 10.1038/nature14340. PubMed DOI

Wang S, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 2016;6:1600137. doi: 10.1002/aenm.201600137. DOI

Chen H, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017;29:1605958. doi: 10.1002/adma.201605958. PubMed DOI

Wu Y, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 2016;28:9218. doi: 10.1002/adma.201602958. PubMed DOI

Hu Y, et al. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 2017;29:1606132. doi: 10.1002/adma.201606132. PubMed DOI

Zhuang T-Z, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small. 2016;12:381–389. doi: 10.1002/smll.201503133. PubMed DOI

Liu D, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018;5:1700270. doi: 10.1002/advs.201700270. PubMed DOI PMC

Hua W, et al. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano. 2017;11:2209–2218. doi: 10.1021/acsnano.6b08627. PubMed DOI

Liu M, et al. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small. 2017;13:1602539. doi: 10.1002/smll.201602539. PubMed DOI

Shyamsunder A, et al. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem. Int. Edit. 2017;56:6192–6197. doi: 10.1002/anie.201701026. PubMed DOI

Cohn G, Ma L, Archer LA. A novel non-aqueous aluminum sulfur battery. J. Power Sources. 2015;283:416–422. doi: 10.1016/j.jpowsour.2015.02.131. DOI

Gao T, et al. A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Edit. 2016;55:9898–9901. doi: 10.1002/anie.201603531. PubMed DOI

Yang H, et al. An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Edit. 2018;57:1898–1902. doi: 10.1002/anie.201711328. PubMed DOI

Yu X, Boyer MJ, Hwang GS, Manthiram A. Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem. 2018;4:586–598. doi: 10.1016/j.chempr.2017.12.029. DOI

Kwon Ki Chang, Suh Jun Min, Varma Rajender S., Shokouhimehr Mohammadreza, Jang Ho Won. Electrocatalytic Water Splitting and CO 2 Reduction: Sustainable Solutions via Single‐Atom Catalysts Supported on 2D Materials. Small Methods. 2019;3(9):1800492. doi: 10.1002/smtd.201800492. DOI

Maleki M, Shokouhimehr M, Karimian H, Beitollahi A. Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams. RSC Adv. 2016;6:51426–51434. doi: 10.1039/C6RA07751J. DOI

Lee I, Joo JB, Shokouhimehr M. Graphene derivatives supported nanocatalysts for oxygen reduction reaction. Chin. J. Catal. 2015;36:1799–1810. doi: 10.1016/S1872-2067(15)60971-8. DOI

Zhang K, et al. Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg. 2019;6:6. doi: 10.1186/s40580-019-0176-3. PubMed DOI PMC

Zhang K, et al. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Res. Chem. Intermediat. 2019;45:599–611. doi: 10.1007/s11164-018-3621-8. DOI

Hasani A, Tekalgne M, Le QV, Jang HW, Kim SY. Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A. 2019;7:430–454. doi: 10.1039/C8TA09496A. DOI

Maleki M, Beitollahi A, Shokouhimehr M. Simple aynthesis of two-dimensional micro/mesoporous boron nitride. Eur. J. Inorg. Chem. 2015;14:2478–2485. doi: 10.1002/ejic.201500194. DOI

Maleki M, et al. One pot synthesis of mesoporous boron nitride using polystyrene-b-poly (ethylene oxide) block copolymer. RSC Adv. 2015;5:6528–6535. doi: 10.1039/C4RA11431K. DOI

Maleki M, Beitollahi A, Shokouhimehr M. Template-free synthesis of porous boron nitride using a single source precursor. RSC Adv. 2015;5:46823–46828. doi: 10.1039/C5RA04636J. DOI

Wang X, et al. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015;5:1501106. doi: 10.1002/aenm.201501106. DOI

Zhao C, et al. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Inter. 2016;8:2372–2379. doi: 10.1021/acsami.5b11492. PubMed DOI

Fan Y, et al. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017;7:1602380. doi: 10.1002/aenm.201602380. DOI

Fan Y, et al. Repelling polysulfide ions by boron nitride nanosheet coated separators in lithium-sulfur batteries. ACS Appl. Energy Mater. 2019;2:2620–2628. doi: 10.1021/acsaem.8b02205. DOI

Deng DR, et al. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano. 2018;12:11120–11129. doi: 10.1021/acsnano.8b05534. PubMed DOI

Li J, et al. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy. 2015;16:10–18. doi: 10.1016/j.nanoen.2015.05.025. DOI

Hu A, Long J, Shu C, Liang R, Li J. Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery. ACS Appl. Mater. Inter. 2018;10:34077–34086. doi: 10.1021/acsami.8b06912. PubMed DOI

Zhou J, et al. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 2015;9:3837–3848. doi: 10.1021/nn506850e. PubMed DOI

Liu Y, et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano. 2016;10:8821–8828. doi: 10.1021/acsnano.6b04577. PubMed DOI

Tzadikov J, et al. Layered boron-nitrogen-carbon-oxygen materials with tunable composition as lithium-ion battery anodes. ChemSusChem. 2018;11:2912–2920. doi: 10.1002/cssc.201801438. PubMed DOI

Wang Y, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016;6:1601057. doi: 10.1002/aenm.201601057. DOI

Wang S, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano. 2016;11:469–477. doi: 10.1021/acsnano.6b06446. PubMed DOI

Reed LD, Ortiz SN, Xiong M, Menke EJ. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem. Commun. 2015;51:14397–14400. doi: 10.1039/C5CC06053B. PubMed DOI

Akhgar BN, Pourghahramani P. Mechanochemical reduction of natural pyrite by aluminum and magnesium. J. Alloy Compd. 2016;657:144–151. doi: 10.1016/j.jallcom.2015.10.014. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...