Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries

. 2019 Sep 19 ; 9 (1) : 13573. [epub] 20190919

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31537878

Grantová podpora
2E29400 Korea Institute of Science and Technology (KIST)
2016M3D1A1027666 Seoul National University
2017R1A2B3009135 Seoul National University

Odkazy

PubMed 31537878
PubMed Central PMC6753128
DOI 10.1038/s41598-019-50080-9
PII: 10.1038/s41598-019-50080-9
Knihovny.cz E-zdroje

Aluminum-ion batteries (AIBs) are regarded as promising candidates for post-lithium-ion batteries due to their lack of flammability and electrochemical performance comparable to other metal-ion batteries. The lack of suitable cathode materials, however, has hindered the development of high-performing AIBs. Sulfur is a cost-efficient material, having distinguished electrochemical properties, and is considered an attractive cathode material for AIBs. Several pioneering reports have shown that aluminum-sulfur batteries (ASBs) exhibit superior electrochemical capacity over other cathode materials for AIBs. However, a rapid decay in the capacity is a huge barrier for their practical applications. Here, we have demonstrated systematically for the first time that the two-dimensional layered materials (e.g. MoS2, WS2, and BN) can serve as fixers of S and sulfide compounds during repeated charge/discharge processes; BN/S/C displays the highest capacity of 532 mAh g-1 (at a current density of 100 mA g-1) compared with the current state-of-the-art cathode material for AIBs. Further, we could improve the life-span of ASBs to an unprecedented 300 cycles with a high Coulombic efficiency of 94.3%; discharge plateaus at ~1.15 V vs. AlCl4-/Al was clearly observed during repeated charge/discharge cycling. We believe that this work opens up a new method for achieving high-performing ASBs.

Zobrazit více v PubMed

Zhang Y, Liu S, Ji Y, Ma J, Yu H. Emerging nonaqueous aluminum‐ion batteries: challenges, status, and perspectives. Adv. Mater. 2018;30:1706310. doi: 10.1002/adma.201706310. PubMed DOI

Cai T, et al. Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energ. Environ. Sci. 2018;11:2341–2347. doi: 10.1039/C8EE00822A. DOI

Zhang K, Lee TH, Jang HW, Shokouhimehr M, Choi J-W. A hybrid energy storage mechanism of zinc hexacyanocobaltate-based metal-organic framework endowing stationary and high-performance lithium-ion storage. Electron. Mater. Lett. 2019;15:444–453. doi: 10.1007/s13391-019-00146-7. DOI

Zhang K, Varma RS, Jang HW, Choi JW, Shokouhimehr M. Iron hexacyanocobaltate metal-organic framework: highly reversible and stationary electrode material with rich borders for lithium-ion batteries. J. Alloy Compd. 2019;791:911–917. doi: 10.1016/j.jallcom.2019.03.379. DOI

Zhang K, et al. Layered metal-organic framework based on tetracycanonickelate as a cathode material for in situ Li-ion storage. RSC Adv. 2019;9:21363–21370. doi: 10.1039/C9RA03975A. PubMed DOI PMC

Lin M-C, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:324. doi: 10.1038/nature14340. PubMed DOI

Wang S, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 2016;6:1600137. doi: 10.1002/aenm.201600137. DOI

Chen H, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017;29:1605958. doi: 10.1002/adma.201605958. PubMed DOI

Wu Y, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 2016;28:9218. doi: 10.1002/adma.201602958. PubMed DOI

Hu Y, et al. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 2017;29:1606132. doi: 10.1002/adma.201606132. PubMed DOI

Zhuang T-Z, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small. 2016;12:381–389. doi: 10.1002/smll.201503133. PubMed DOI

Liu D, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018;5:1700270. doi: 10.1002/advs.201700270. PubMed DOI PMC

Hua W, et al. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano. 2017;11:2209–2218. doi: 10.1021/acsnano.6b08627. PubMed DOI

Liu M, et al. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small. 2017;13:1602539. doi: 10.1002/smll.201602539. PubMed DOI

Shyamsunder A, et al. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem. Int. Edit. 2017;56:6192–6197. doi: 10.1002/anie.201701026. PubMed DOI

Cohn G, Ma L, Archer LA. A novel non-aqueous aluminum sulfur battery. J. Power Sources. 2015;283:416–422. doi: 10.1016/j.jpowsour.2015.02.131. DOI

Gao T, et al. A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Edit. 2016;55:9898–9901. doi: 10.1002/anie.201603531. PubMed DOI

Yang H, et al. An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Edit. 2018;57:1898–1902. doi: 10.1002/anie.201711328. PubMed DOI

Yu X, Boyer MJ, Hwang GS, Manthiram A. Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem. 2018;4:586–598. doi: 10.1016/j.chempr.2017.12.029. DOI

Kwon Ki Chang, Suh Jun Min, Varma Rajender S., Shokouhimehr Mohammadreza, Jang Ho Won. Electrocatalytic Water Splitting and CO 2 Reduction: Sustainable Solutions via Single‐Atom Catalysts Supported on 2D Materials. Small Methods. 2019;3(9):1800492. doi: 10.1002/smtd.201800492. DOI

Maleki M, Shokouhimehr M, Karimian H, Beitollahi A. Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams. RSC Adv. 2016;6:51426–51434. doi: 10.1039/C6RA07751J. DOI

Lee I, Joo JB, Shokouhimehr M. Graphene derivatives supported nanocatalysts for oxygen reduction reaction. Chin. J. Catal. 2015;36:1799–1810. doi: 10.1016/S1872-2067(15)60971-8. DOI

Zhang K, et al. Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg. 2019;6:6. doi: 10.1186/s40580-019-0176-3. PubMed DOI PMC

Zhang K, et al. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Res. Chem. Intermediat. 2019;45:599–611. doi: 10.1007/s11164-018-3621-8. DOI

Hasani A, Tekalgne M, Le QV, Jang HW, Kim SY. Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A. 2019;7:430–454. doi: 10.1039/C8TA09496A. DOI

Maleki M, Beitollahi A, Shokouhimehr M. Simple aynthesis of two-dimensional micro/mesoporous boron nitride. Eur. J. Inorg. Chem. 2015;14:2478–2485. doi: 10.1002/ejic.201500194. DOI

Maleki M, et al. One pot synthesis of mesoporous boron nitride using polystyrene-b-poly (ethylene oxide) block copolymer. RSC Adv. 2015;5:6528–6535. doi: 10.1039/C4RA11431K. DOI

Maleki M, Beitollahi A, Shokouhimehr M. Template-free synthesis of porous boron nitride using a single source precursor. RSC Adv. 2015;5:46823–46828. doi: 10.1039/C5RA04636J. DOI

Wang X, et al. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015;5:1501106. doi: 10.1002/aenm.201501106. DOI

Zhao C, et al. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Inter. 2016;8:2372–2379. doi: 10.1021/acsami.5b11492. PubMed DOI

Fan Y, et al. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017;7:1602380. doi: 10.1002/aenm.201602380. DOI

Fan Y, et al. Repelling polysulfide ions by boron nitride nanosheet coated separators in lithium-sulfur batteries. ACS Appl. Energy Mater. 2019;2:2620–2628. doi: 10.1021/acsaem.8b02205. DOI

Deng DR, et al. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano. 2018;12:11120–11129. doi: 10.1021/acsnano.8b05534. PubMed DOI

Li J, et al. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy. 2015;16:10–18. doi: 10.1016/j.nanoen.2015.05.025. DOI

Hu A, Long J, Shu C, Liang R, Li J. Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery. ACS Appl. Mater. Inter. 2018;10:34077–34086. doi: 10.1021/acsami.8b06912. PubMed DOI

Zhou J, et al. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 2015;9:3837–3848. doi: 10.1021/nn506850e. PubMed DOI

Liu Y, et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano. 2016;10:8821–8828. doi: 10.1021/acsnano.6b04577. PubMed DOI

Tzadikov J, et al. Layered boron-nitrogen-carbon-oxygen materials with tunable composition as lithium-ion battery anodes. ChemSusChem. 2018;11:2912–2920. doi: 10.1002/cssc.201801438. PubMed DOI

Wang Y, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016;6:1601057. doi: 10.1002/aenm.201601057. DOI

Wang S, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano. 2016;11:469–477. doi: 10.1021/acsnano.6b06446. PubMed DOI

Reed LD, Ortiz SN, Xiong M, Menke EJ. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem. Commun. 2015;51:14397–14400. doi: 10.1039/C5CC06053B. PubMed DOI

Akhgar BN, Pourghahramani P. Mechanochemical reduction of natural pyrite by aluminum and magnesium. J. Alloy Compd. 2016;657:144–151. doi: 10.1016/j.jallcom.2015.10.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...