Rendering Redox Reactions of Cathodes in Li-Ion Capacitors Enabled by Lanthanides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32010838
PubMed Central
PMC6990622
DOI
10.1021/acsomega.9b03699
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Capacitors allow extremely fast charge and discharge operations, which is a challenge faced by recent metal-ion batteries despite having highly improved energy densities. Thus, combined type electric energy storage devices that can integrate high energy density and high power density with high potentials, can overcome the shortcomings of the current metal-ion batteries and capacitors. However, the limited capacities of cathode materials owing to the barren redox reactions are regarded as an obstacle for the development of future high-performance hybrid metal-ion capacitors. In this study, we demonstrate the redox-reaction-rendering effect of the much overlooked lanthanide elements when used as the cathode of lithium-ion capacitors using the mesoporous carbon (MC) as a matrix material. Consequently, these lanthanide elements can effectively enrich the redox reaction, thus improving the capacity of the matrix materials by more than two times. Typically, the Gd-elemental decoration of MC surprisingly enhances the capacity by almost two times as compared with the underacted MC. Furthermore, the La nanoparticles (NPs) decoration depicts the same behavior. Evident redox peaks were formed on the original rectangular cyclic voltammetry (CV) curves. This study provides the first example of embedding lanthanide elements on matrix materials to enrich the desired redox reactions for improving the electrochemical performances.
Zobrazit více v PubMed
Zhang K.; Lee T. H.; Cha J. H.; Varma R. S.; Choi J.-W.; Jang H. W.; Shokouhimehr M. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. Sci. Rep. 2019, 9, 1357310.1038/s41598-019-50080-9. PubMed DOI PMC
Zhang K.; Lee T. H.; Cha J. H.; Jang H. W.; Choi J.-W.; Mahmoudi M.; Shokouhimehr M. Metal-organic framework-derived metal oxide nanoparticles@reduced graphene oxide composites as cathode materials for rechargeable aluminium-ion batteries. Sci. Rep. 2019, 9, 1373910.1038/s41598-019-50156-6. PubMed DOI PMC
An W.; Gao B.; Mei S.; Xiang B.; Fu J.; Wang L.; Zhang Q.; Chu P. K.; Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 144710.1038/s41467-019-09510-5. PubMed DOI PMC
Han J.-G.; Kim K.; Lee Y.; Choi N.-S. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 2019, 31, 180482210.1002/adma.201804822. PubMed DOI
Zhang K.; Lee T. H.; Jang H. W.; Shokouhimehr M.; Choi J.-W. A hybrid energy storage mechanism of zinc hexacyanocobaltate-based metal-organic framework endowing stationary and high-performance lithium-ion storage. Electron Mater. Lett. 2019, 15, 444–453. 10.1007/s13391-019-00146-7. DOI
Zhang K.; Varma R. S.; Jang H. W.; Choi J.-W.; Shokouhimehr M. Iron hexacyanocobaltate metal-organic framework: highly reversible and stationary electrode material with rich borders for lithium-ion batteries. J. Alloys Compd. 2019, 791, 911–917. 10.1016/j.jallcom.2019.03.379. DOI
Zhang K.; Lee T. H.; Bubach B.; Ostadhassan M.; Jang H. W.; Choi J.-W.; Shokouhimehr M. Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage. RSC Adv. 2019, 9, 26668–26675. 10.1039/C9RA03746B. PubMed DOI PMC
Zhang K.; Lee T. H.; Bubach B.; Ostadhassan M.; Jang H. W.; Choi J.-W.; Shokouhimehr M. Layered metal-organic framework based on tetracyanonickelate as a cathode material for in situ Li-ion storage. RSC Adv. 2019, 9, 21363–21370. 10.1039/C9RA03975A. PubMed DOI PMC
Zhu G.; Ma L.; Lin H.; Zhao P.; Wang L.; Hu Y.; Chen R.; Chen T.; Wang Y.; Tie Z.; Jin Z. High-performance Li-ion capacitor based on black-TiO2–x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713–1719. 10.1007/s12274-019-2427-3. DOI
Zhu G.; Chen T.; Wang L.; Ma L.; Hu Y.; Chen R.; Wang Y.; Wang C.; Yan W.; Tie Z.; Liu J.; Jin Z. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 2018, 14, 246–252. 10.1016/j.ensm.2018.04.009. DOI
Chen T.; Cheng B.; Chen R.; Hu Y.; Lv H.; Zhu G.; Wang Y.; Ma L.; Liang J.; Tie Z.; Jin Z.; Liu J. Hierarchical ternary carbide nanoparticle/carbon nanotube-inserted N-doped carbon concave-polyhedrons for efficient lithium and sodium storage. ACS Appl. Mater. Interfaces 2016, 8, 26834–26841. 10.1021/acsami.6b08911. PubMed DOI
Wang B.; Ryu J.; Choi S.; Zhang X.; Pribat D.; Li X.; Zhi L.; Park S.; Ruoff R. S. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315. 10.1021/acsnano.8b09034. PubMed DOI
Wu Y.; Wang W.; Ming J.; Li M.; Xie L.; He X.; Wang J.; Liang S.; Wu Y. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv. Funct. Mater. 2019, 29, 180597810.1002/adfm.201805978. DOI
Zhang K.; Lee T. H.; Bubach B.; Jang H. W.; Ostadhassan M.; Choi J.-W.; Shokouhimehr M. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Sci. Rep. 2019, 9, 1366510.1038/s41598-019-50154-8. PubMed DOI PMC
Zhang K.; Lee T. H.; Cha J. H.; Jang H. W.; Shokouhimehr M.; Choi J.-W. S@GO as a high-performance cathode material for rechargeable aluminum-ion batteries. Electron. Mater. Lett. 2019, 15, 720–726. 10.1007/s13391-019-00170-7. DOI
Zhang K.; Lee T. H.; Cha J. H.; Jang H. W.; Shokouhimehr M.; Choi J.-W. Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries. Electron. Mater. Lett. 2019, 15, 727–732. 10.1007/s13391-019-00169-0. DOI
Ma L.; Chen T.; Zhu G.; Hu Y.; Lu H.; Chen R.; Liang J.; Tie Z.; Jin Z.; Liu J. Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A 2016, 4, 15041–15048. 10.1039/C6TA06692E. DOI
Ma L.; Chen R.; Hu Y.; Zhu G.; Chen T.; Lu H.; Liang J.; Tie Z.; Jin Z.; Liu J. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale 2016, 8, 17911–17918. 10.1039/C6NR06307A. PubMed DOI
Sun P.; Zhao X.; Chen R.; Chen T.; Ma L.; Fan Q.; Lu H.; Hu Y.; Tie Z.; Jin Z.; Xu Q.; Liu J. Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale 2016, 8, 7408–7415. 10.1039/C5NR08832A. PubMed DOI
Lu H.; Chen R.; Hu Y.; Wang X.; Wang Y.; Ma L.; Zhu G.; Chen T.; Tie Z.; Jin Z.; Liu J. Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale 2017, 9, 1972–1977. 10.1039/C6NR08296C. PubMed DOI
Tabassum H.; Zou R.; Mahmood A.; Liang Z.; Wang Q.; Zhang H.; Gao S.; Qu C.; Guo W.; Guo S. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 2018, 30, 170544110.1002/adma.201705441. PubMed DOI
Xu Q.; Sun J.-K.; Yu Z.-L.; Yin Y.-X.; Xin S.; Yu S.-H.; Guo Y.-G. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv. Mater. 2018, 30, 170743010.1002/adma.201707430. PubMed DOI
Xu Q.; Sun J. K.; Yin Y. X.; Guo Y.-G. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 2018, 28, 170523510.1002/adfm.201705235. DOI
Cui J.; Yao S.; Lu Z.; Huang J.-Q.; Chong W. G.; Ciucci F.; Kim J.-K. Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 2018, 8, 170248810.1002/aenm.201702488. DOI
Ock I. W.; Choi J. W.; Jeong H. M.; Kang J. K. Synthesis of pseudocapacitive polymer chain anode and subnanoscale metal oxide cathode for aqueous hybrid capacitors enabling high energy and power densities along with long cycle life. Adv. Energy Mater. 2018, 8, 170289510.1002/aenm.201702895. DOI
Chen J.; Yang B.; Hou H.; Li H.; Liu L.; Zhang L.; Yan X. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 197006910.1002/aenm.201970069. DOI
Ding J.; Wang H.; Li Z.; Cui K.; Karpuzov D.; Tan X.; Kohandehghan A.; Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955. 10.1039/C4EE02986K. DOI
Chen S.; Wang J.; Fan L.; Ma R.; Zhang E.; Liu Q.; Lu B. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 2018, 8, 180014010.1002/aenm.201800140. DOI
Zhang K.; Lee T. H.; Noh H.; Islamoglu T.; Farha O. K.; Jang H. W.; Choi J.-W.; Shokouhimehr M. Realization of lithium-ion capacitors with enhanced energy density via the use of gadolinium hexacyanocobaltate as a cathode material. ACS Appl. Mater. Interfaces 2019, 11, 31799–31805. 10.1021/acsami.9b07711. PubMed DOI
Zhang K.; Hong K.; Suh J. M.; Lee T. H.; Kwon O.; Shokouhimehr M.; Jang H. W. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Res. Chem. Intermed. 2019, 45, 599–611. 10.1007/s11164-018-3621-8. DOI
Zhang K.; Suh J. M.; Choi J.-W.; Jang H. W.; Shokouhimehr M.; Varma R. S. Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 2019, 4, 483–495. 10.1021/acsomega.8b03051. PubMed DOI PMC
Zhang K.; Suh J. M.; Lee T. H.; Cha J. H.; Choi J.-W.; Jang H. W.; Varma R. S.; Shokouhimehr M. Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence 2019, 6, 610.1186/s40580-019-0176-3. PubMed DOI PMC
Yousaf A. B.; Imran M.; Farooq M.; Kasak P. Interfacial phenomenon and nanostructural enhancements in palladium loaded lanthanum hydroxide nanorods for heterogeneous catalytic applications. Sci. Rep. 2018, 8, 435410.1038/s41598-018-22800-0. PubMed DOI PMC
Muthusankar G.; Sethupathi M.; Chen S.-M.; Devi R. K.; Vinoth R.; Gopu G.; Anandhan N.; Sengottuvelan N. N-doped carbon quantum dots@hexagonal porous copper oxide decorated multiwall carbon nanotubes: a hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Composites, Part B 2019, 174, 10697310.1016/j.compositesb.2019.106973. DOI
Xiao Q.; Feng J.; Feng M.; Li J.; Liu Y.; Wang D.; Huang S. A ratiometric electrochemical aptasensor for ultrasensitive determination of adenosine triphosphate via a triple-helix molecular switch. Microchim. Acta 2019, 186, 47810.1007/s00604-019-3630-3. PubMed DOI