Synthesis of 1-Substituted 1H-1,2,3,4-Tetrazoles Using Biosynthesized Ag/Sodium Borosilicate Nanocomposite

. 2019 May 31 ; 4 (5) : 8985-9000. [epub] 20190522

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31459987

An expedient solvent-free methodology has been developed to produce 1-substituted 1H-1,2,3,4-tetrazoles using sodium borosilicate glass-supported silver nanoparticles (Ag NPs) as a novel heterogeneous catalyst. A cost-efficient, facile, and greener method was deployed for the creation of Ag/sodium borosilicate nanocomposite (ASBN) catalyst by using Aleurites moluccana leaf extract as a stabilizing and reducing agent. The ASBN catalyst was identified using the latest microscopic and spectroscopic techniques such as FT-IR, TEM, FESEM, XRD, EDS, and elemental mapping. The deployment of this new catalyst enables the preparation of assorted 1-substituted tetrazoles in good to high yields via an easy work-up procedure in a relatively short reaction time under environmentally friendly conditions without using harmful and toxic reducing agents. The ASBN catalyst can be recycled and reused multiple times without meaningful loss of activity. To extend the application of the ASBN, the performance of the quantitative structure-activity relationships model was investigated for protein binding and toxicity hazard considerations.

Zobrazit více v PubMed

Katritzky A. R.; Rees C. W.; Scriven E. F. (Eds.), Comprehensive Heterocyclic Chemistry II; 4, Pergamon Press: New York, NY, 1996; pp. 621–678.

Huisgen R.; Sauer J.; Sturm H. J.; Markgraf J. H. Ringóffnungen der azole, II. die bildung von 1.3.4-oxdiazolen bei der acylierung 5-substituierter tetrazole. Chem. Ber. 1960, 93, 2106–2124. 10.1002/cber.19600930932. DOI

Ek F.; Wistrand L.-G.; Frejd T. Synthesis of fused tetrazole-and imidazole derivatives via iodocyclization. Tetrahedron 2003, 59, 6759–6769. 10.1016/S0040-4020(03)00818-4. DOI

Wang X.-S.; Tang Y.-Z.; Huang X.-F.; Qu Z. R.; Che C.-M.; Chan P. W. H.; Xiong R.-G. Syntheses, crystal structures, and luminescent properties of three novel zinc coordination polymers with tetrazolyl ligands. Inorg. Chem. 2005, 44, 5278–5285. 10.1021/ic050354x. PubMed DOI

Herr R. J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem. 2002, 10, 3379–3393. 10.1016/S0968-0896(02)00239-0. PubMed DOI

Ford R. E.; Knowles P.; Lunt E.; Marshall S. M.; Penrose A. J.; Ramsden C. A.; Summers A. J. H.; Walker J. L.; Wright D. E. Synthesis and quantitative structure-activity relationships of antiallergic 2-hydroxy-N-(1H-tetrazol-5-yl) benzamides and N-(2-hydroxyphenyl)-1H-tetrazole-5-carboxamides. J. Med. Chem. 1986, 29, 538–549. 10.1021/jm00154a019. PubMed DOI

Hallinan E. A.; Tsymbalov S.; Dorn C. R.; Pitzele B. S.; Hansen D. W. Jr.; Moore W. M.; Jerome G. M.; Connor J. R.; Branson L. F.; Widomski D. L.; Zhang Y.; Currie M. G.; Manning P. T. Synthesis and biological characterization of L-N6-(1-iminoethyl) lysine 5-tetrazole-amide, a prodrug of a selective iNOS inhibitor. J. Med. Chem. 2002, 45, 1686–1689. 10.1021/jm010420e. PubMed DOI

Shokouhimehr M.; Hong K.; Lee T. H.; Moon C. W.; Hong S. P.; Zhang K.; Suh J. M.; Choi K. S.; Varma R. S.; Jang H. W. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018, 20, 3809–3817. 10.1039/C8GC01240G. DOI

Inada Y.; Wada T.; Shibouta Y.; Ojima M.; Sanada T.; Ohtsuki K.; Itoh K.; Kubo K.; Kohara Y.; Naka T. Antihypertensive effects of a highly potent and long-acting angiotensin II subtype-1 receptor antagonist,(+−)-1-(cyclohexyloxycarbonyloxy) ethyl 2-ethoxy-1-[[2′-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl]-1H-benzimidazole-7-carboxylate (TCV-116), in various hypertensive rats. J. Pharmacol. Exp. Ther. 1994, 268, 1540–1547. PubMed

Kumar C. N. S. S. P.; Parida D. K.; Santhoshi A.; Kota A. K.; Sridhar B.; Rao V. J. Synthesis and biological evaluation of tetrazole containing compounds as possible anticancer agents. Med. Chem. Commun. 2011, 2, 486–492. 10.1039/c0md00263a. DOI

Dolušić E.; Larrieu P.; Moineaux L.; Stroobant V.; Pilotte L.; Colau D.; Pochet L.; Van den Eynde B.; Masereel B.; Wouters J.; Frédérick R. Tryptophan 2, 3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl) ethenyl) indoles as potential anticancer immunomodulators. J. Med. Chem. 2011, 54, 5320–5334. 10.1021/jm2006782. PubMed DOI

Vieira E.; Huwyler J.; Jolidon S.; Knoflach F.; Mutel V.; Wichmann J. 9H-Xanthene-9-carboxylic acid [1,2,4] oxadiazol-3-yl-and (2H-tetrazol-5-yl)-amides as potent, orally available mGlu1 receptor enhancers. Bioorg. Med. Chem. Lett. 2005, 15, 4628–4631. 10.1016/j.bmcl.2005.05.135. PubMed DOI

Thornber C. W. Isosterism and molecular modification in drug design. Chem. Soc. Rev. 1979, 8, 563–580. 10.1039/cs9790800563. DOI

Wei C. X.; Bian M.; Gong G. H. Tetrazolium compounds: synthesis and applications in medicine. Molecules 2015, 20, 5528–5553. 10.3390/molecules20045528. PubMed DOI PMC

Schelenz T.; Schafer W. J. Zur physikalisch-chemischen Charakterisierung von 5-Amino-1-aryl-1H-tetrazolen: Charakterisierung von Wasserlóslichkeiten und ihre Beziehungen zu Octan-1-ol/Wasser-Verteilungskoeffizienten. J. für prakt. Chem. 2000, 342, 91–95. 10.1002/(SICI)1521-3897(200001)342:1<91::AID-PRAC91>3.0.CO;2-F. DOI

Hiskey M.; Chavez D. E.; Naud D. L.; Son S. F.; Berghout H. L.; Bolme C. A. In Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics. Proc. Int. Pyrotech. Semin. 2000, 27, 3.

Kundu D.; Majee A.; Hajra A. Indium triflate-catalyzed one-pot synthesis of 1-substituted-1H-1,2,3,4-tetrazoles under solvent-free conditions. Tetrahedron Lett. 2009, 50, 2668–2670. 10.1016/j.tetlet.2009.03.131. DOI

Butler R. N. Recent advances in tetrazole Chemistry. Adv. Heterocycl. Chem. 1977, 21, 323–435. 10.1016/S0065-2725(08)60735-7. DOI

Moderhack D. Ring transformations in tetrazole chemistry. J. Pract. Chem./Chem.-Ztg. 1998, 340, 687–709. 10.1002/prac.19983400802. DOI

Singh H.; Chawla A. S.; Kapoor V. K.; Paul D.; Malhotra R. K. 4 Medicinal chemistry of Tetrazoles. Prog. Med. Chem. 1980, 17, 151–183. 10.1016/S0079-6468(08)70159-0. PubMed DOI

Nasrollahzadeh M.; Bayat Y.; Habibi D.; Moshaee S. FeCl3-SiO2 as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [2+3] cycloaddition of nitriles and sodium azide. Tetrahedron Lett. 2009, 50, 4435–4438. 10.1016/j.tetlet.2009.05.048. DOI

Jin T.; Kitahara F.; Kamijo S.; Yamamoto Y. Copper-catalyzed synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and trimethylsilyl azide. Tetrahedron Lett. 2008, 49, 2824–2827. 10.1016/j.tetlet.2008.02.115. PubMed DOI

Zimmerman D. M.; Olofson R. A. The rapid synthesis of 1-substituted tetrazoles. Tetrahedron Lett. 1969, 10, 5081–5084. 10.1016/S0040-4039(01)88889-4. DOI

Fallon F. G.; Herbst R. M. Synthesis of 1-Substituted Tetrazoles. J. Org. Chem. 1957, 22, 933–936. 10.1021/jo01359a020. DOI

Jin T.; Kamijo S.; Yamamoto Y. Synthesis of 1-substituted tetrazoles via the acid-catalyzed [3+2] cycloaddition between isocyanides and trimethylsilyl azide. Tetrahedron Lett. 2004, 45, 9435–9437. 10.1016/j.tetlet.2004.10.103. DOI

Su W. K.; Hong Z.; Shan W. G.; Zhang X. X. A facile synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by ytterbium triflate hydrate. Eur. J. Org. Chem. 2006, 2006, 2723–2726. 10.1002/ejoc.200600007. DOI

Gupta A. K.; Song C. H.; Oh C. H. 1-(2-Iodophenyl)-1H-tetrazole as a ligand for Pd(II) catalyzed Heck reaction. Tetrahedron Lett. 2004, 45, 4113–4116. 10.1016/j.tetlet.2004.03.162. DOI

Potewar T. M.; Siddiqui S. A.; Lahoti R. J.; Srinivasan K. V. Efficient and rapid synthesis of 1-substituted-1H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate. Tetrahedron Lett. 2007, 48, 1721–1724. 10.1016/j.tetlet.2007.01.050. DOI

Habibi D.; Nasrollahzadeh M.; Kamali T. A. Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the Natrolite zeolite as a new and reusable heterogeneous catalyst. Green Chem. 2011, 13, 3499–3504. 10.1039/c1gc15245a. DOI

Nasrollahzadeh M.; Sajjadi M.; Khonakdar H. A. Synthesis and characterization of novel Cu(II) complex coated Fe3O4@ SiO2 nanoparticles for catalytic performance. J. Mol. Struct. 2018, 1161, 453–463. 10.1016/j.molstruc.2018.02.026. DOI

Sajjadi M.; Nasrollahzadeh M.; Sajadi S. M. Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J. Colloid Interface Sci. 2017, 497, 1–13. 10.1016/j.jcis.2017.02.037. PubMed DOI

Varma R. S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustainable Chem. Eng. 2016, 4, 5866–5878. 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Hu W.; Liu B.; Wang Q.; Liu Y.; Liu Y.; Jing P.; Yu S.; Lin L.; Zhang J. A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 2013, 49, 7596–7598. 10.1039/c3cc42687d. PubMed DOI

Gawande M. B.; Branco P. S.; Varma R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. 10.1039/c3cs35480f. PubMed DOI

Dehghani F.; Sardarian A. R.; Esmaeilpour M. Salen complex of Cu(II) supported on superparamagnetic Fe3O4@ SiO2 nanoparticles: An efficient and recyclable catalyst for synthesis of 1-and 5-substituted 1H-tetrazoles. J. Organomet. Chem. 2013, 743, 87–96. 10.1016/j.jorganchem.2013.06.019. DOI

Zhang K.; Suh J. M.; Choi J. W.; Jang H. W.; Shokouhimehr M.; Varma R. S. Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 2019, 4, 483–495. 10.1021/acsomega.8b03051. PubMed DOI PMC

Wang Z.; Xu C.; Gao G.; Li X. Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 2014, 4, 13644–13651. 10.1039/c3ra47721e. DOI

Huang Y.; Zhang Y.; Lin S.; Yan L.; Cao R.; Yang R.; Liang X.; Xiang W. Sol-gel synthesis of NiO nanoparticles doped sodium borosilicate glass with third-order nonlinear optical properties. J. Alloys Compd. 2016, 686, 564–570. 10.1016/j.jallcom.2016.06.072. DOI

Zhong J.; Xiang W. Influence of In2O3 nanocrystals incorporation on sodium borosilicate glass and their nonlinear optical properties. Mater. Lett. 2017, 193, 22–25. 10.1016/j.matlet.2017.01.062. DOI

Han L.; Yin D.; Yang X.; Li J.; Gao X.; Liu H. Incorporation of Ag-In2O3 nanostructures into sodium borosilicate glass: A combined route for high transparency and fluorescence. Mater. Chem. Phys. 2016, 181, 234–240. 10.1016/j.matchemphys.2016.06.054. DOI

Zhou X.; Huang X.; Qi X.; Wu S.; Xue C.; Boey F. Y. C.; Yan Q.; Chen P.; Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846. 10.1021/jp903821n. DOI

Lowe A. B.; Sumerlin B. S.; Donovan M. S.; McCormick C. L. Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J. Am. Chem. Soc. 2002, 124, 11562–11563. 10.1021/ja020556h. PubMed DOI

He J.; Kunitake T.; Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 2003, 15, 4401–4406. 10.1021/cm034720r. DOI

Troupis A.; Hiskia A.; Papaconstantinou E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed. 2002, 41, 1911–1914. 10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0. PubMed DOI

Nasrollahzadeh M.; Sajadi S. M.; Hatamifard A. Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl. Catal. B 2016, 191, 209–227. 10.1016/j.apcatb.2016.02.042. DOI

Banerjee P.; Satapathy M.; Mukhopahayay A.; Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 2014, 1, 3.10.1186/s40643-014-0003-y. DOI

Varma R. S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128. 10.1016/j.coche.2011.12.002. DOI

Varma R. S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. 10.1039/c3gc42640h. DOI

Nasrollahzadeh M.; Sajjadi M.; Maham M.; Sajadi S. M.; Barzinjy A. A. Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium(VI), nitro compounds and organic dyes. Mater. Res. Bull. 2018, 102, 24–35. 10.1016/j.materresbull.2018.01.032. DOI

Meyre-Silva C.; Mora T. C.; Soares Santos A. R.; Dal Magro J.; Yunes R. A.; Delle Monache F.; Cechinel-Filho V. A Triterpene and a Flavonoid Glycoside from Aleurites moluccana L. Willd.(Euphorbiaceae). Acta Farm. Bonaerense 1997, 16, 169–172.

Abd S. O.; Mohamad R. R. Antibacterial activity of Aleurites Moluccana (Euphorbiaceae) against some clinical isolates. Res. J. Biotechnol. 2010, 5, 1.

Han S. T.Medicinal Plants in the South Pacific; World Health Organization (WHO) Regional Publications, Western Pacific Series, 1998; 19, 7–8.

Prabowo W. C.; Wirasutisna K. R.; Insanu M. Isolation and characterization of 3-acetyl aleuritolic acid and scopoletin from stem bark of Aleurites moluccana (L.) Willd. Int. J. Pharm. Pharm. Sci. 2013, 5, 851–853.

Nasrollahzadeh M.; Sajjadi M.; Dasmeh H. R.; Sajadi S. M. Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J. Alloys Compd. 2018, 763, 1024–1034. 10.1016/j.jallcom.2018.05.012. DOI

Bhat S. V.; Nagasampagi B. A.; Sivakumar M.. Chemistry of Natural Products; Narosa Publishing House: New Delhi, 2005, p. 585.

Zhong J.; Ma X.; Lu H.; Wang X.; Zhang S.; Xiang W. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles. J. Alloys Compd. 2014, 607, 177–182. 10.1016/j.jallcom.2014.04.080. DOI

Habibi D.; Nabavi H.; Nasrollahzadeh M. Silica sulfuric acid as an efficient heterogeneous catalyst for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles. J. Chem. 2012, 2013, 1.10.1155/2013/645313. DOI

Wang H.; Wei F.; Chen Q.; Hu X.; Niu X. Trifluoromethanesulfonimide catalysed synthesis of 1-substituted-1H-1,2,3,4-tetrazoles using glycerol as green solvent at room temperature. J. Chem. Res. 2016, 40, 570.10.3184/174751916X14721249985304. DOI

Darvish F.; Khazraee S. FeCl3 catalyzed one pot synthesis of 1-substituted 1H-1,2,3,4-tetrazoles under solvent-free conditions. Int. J. Org. Chem. 2015, 05, 75.10.4236/ijoc.2015.52009. DOI

Holmquist H.; Lexén J.; Rahmberg M.; Sahlin U.; Palm J. G.; Rydberg T. The potential to use QSAR to populate ecotoxicity characterisation factors for simplified LCIA and chemical prioritisation. Int. J. Life Cycle Assess. 2018, 23, 2208–2216. 10.1007/s11367-018-1452-x. DOI

von der Ohe P. C.; Dulio V.; Slobodnik J.; De Deckere E.; Kühne R.; Ebert R. U.; Ginebreda A.; De Cooman W.; Schüürmann G.; Brack W. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci. Total Environ. 2011, 409, 2064–2077. 10.1016/j.scitotenv.2011.01.054. PubMed DOI

Egeghy P. P.; Vallero D. A.; Hubal E. A. C. Exposure-based prioritization of chemicals for risk assessment. Environ. Sci. Policy 2011, 14, 950–964. 10.1016/j.envsci.2011.07.010. DOI

van Leeuwen C. J.; Vermeire T. G. (Eds.). Risk Assessment of Chemicals: an Introduction; Springer Science & Business Media: 2007; pp. 1–36.

Hauschild M. Z.; Huijbregts M.; Jolliet O.; MacLeod M.; Margni M.; van de Meent D.; Rosenbaum R. K.; McKone T. E. Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ. Sci. Technol. 2008, 42, 7032–7037. 10.1021/es703145t. PubMed DOI

Zvinavashe E.; Murk A. J.; Rietjens I. M. C. M. On the number of EINECS compounds that can be covered by (Q) SAR models for acute toxicity. Toxicol. Lett. 2009, 184, 67–72. 10.1016/j.toxlet.2008.10.030. PubMed DOI

Fernández-Pumarega A.; Amézqueta S.; Farré S.; Muñoz-Pascual L.; Abraham M. H.; Fuguet E.; Rosés M. Modeling aquatic toxicity through chromatographic systems. Anal. Chem. 2017, 89, 7996–8003. 10.1021/acs.analchem.7b01301. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Silver nanomaterials: synthesis and (electro/photo) catalytic applications

. 2021 Oct 18 ; 50 (20) : 11293-11380. [epub] 20211018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...